

Received 3 September 2020 Accepted 7 October 2020

Edited by A. G. Oliver, University of Notre Dame, USA

Keywords: bedaquiline; bedaqulinium salt; drug-resistant tuberculosis; crystal structure.

CCDC references: 2036005; 2036004; 2036003; 2036002; 2036001

Supporting information: this article has supporting information at journals.iucr.org/c

Crystal structures of salts of bedaquiline

Mercy Okezue,^a Daniel Smith,^a Matthias Zeller,^b* Stephen R. Byrn,^{a,c} Pamela Smith,^d Susan Bogandowich-Knipp,^e Dale K. Purcell^f and Kari L. Clase^{a,g}

^aPurdue University, Industrial and Physical Pharmacy, 575 Stadium Mall, West Lafayette, IN 47907, USA, ^bPurdue University, Chemistry, 560 Oval Drive, West Lafayette, IN 47907-2084, USA, ^cImproved Pharma, LLC, 1281 Win Hentschel Boulevard, West Lafayette, IN 47906, USA, ^dLeading with Smart Science, LLC, 5315 Shootingstar Lane, West Lafayette, IN 47906, USA, ^eRavine Pharmaceuticals, LLC, 3425 DuBois Street, West Lafayette, IN 47906, USA, ^fChemical Microscopy, LLC, 1281 Win Hentschel Boulevard, West Lafayette, IN 47906, USA, and ^gDepartment of Agricultural & Biological Engineering, Biotechnology Innovation and Regulatory Science Center, Lilly Hall of Life Sciences, Purdue University, 915 State Street, West Lafayette, IN 47906, USA. *Correspondence e-mail: zeller4@purdue.edu

Bedaquiline [systematic name: 1-(6-bromo-2-methoxyquinolin-3-vl)-4-(dimethylamino)-2-(naphthalen-1-yl)-1-phenylbutan-2-ol, C32H31BrN2O2] is one of two important new drugs for the treatment of drug-resistant tuberculosis (TB). It is marketed in the US as its fumarate salt {systematic name: [4-(6bromo-2-methoxyquinolin-3-yl)-3-hydroxy-3-(naphthalen-1-yl)-4-phenylbutyl]dimethylazanium 3-carboxyprop-2-enoate, $C_{32}H_{32}BrN_2O_2^+ \cdot C_4H_3O_4^-$, and about a dozen other salts of bedaquiline have been described in patent literature, but none have so far been structurally described. In a first communication, we present the crystal structure of bedaquilinium fumarate and of two new benzoate salts, as well as that of a degradation product of the reaction of bedaquilinium fumarate with sodium ethoxide, 3-benzyl-6-bromo-2methoxyquinoline, $C_{17}H_{14}BrNO$. The fumarate and benzoate salts both feature cations monoprotonated at the dimethylamino group. The much less basic quinoline N atom remains unprotonated. Both salts feature a 1:1 cation-to-anion ratio, with the fumarate being present as monoanionic hydrofumarate. The conformations of the cations are compared to that of free base bedaquiline and with each other. The flexible backbone of the bedaquiline structure leads to a landscape of conformations with little commonalities between the bedaquiline entities in the various structures. The conformations are distinctively different for the two independent molecules of the free base, the two independent molecules of the hydrofumarate salt, and the one unique cation of the benzoate salt. Packing of the salts is dominated by hydrogen bonding. Hydrogen-bonding motifs, as well as the larger hydrogen-bonded entities within the salts, are quite similar for the salts, despite the vastly differing conformations of the cations, and both the hydrofumarate and the benzoate structure feature chains of hydrogenbonded anions that are surrounded by and hydrogen bonded to the larger bedaquilinium cations, leading to infinite broad ribbons of anions, cations, and (for the benzoate salt) water molecules. The benzoate salt was isolated in two forms: as a 1.17-hydrate (C₃₂H₃₂BrN₂O₂⁺·C₇H₅O₂⁻·1.166H₂O), obtained from acetone or propanol solution, with one fully occupied water molecule tightly integrated into the hydrogen-bonding network of anions and cations, and one partially occupied water molecule [refined occupancy 16.6 (7)%], only loosely hydrogen bonded to the quinoline N atom. The second form is an acetonitrile solvate $(C_{32}H_{32}BrN_2O_2^+ C_7H_5O_2^- 0.742CH_3CN H_2O)$, in which the partially occupied water molecule is replaced by a 74.2 (7)%-occupied acetonitrile molecule. The partial occupancy induces disorder for the benzoate phenyl ring. The acetonitrile solvate is unstable in atmosphere and converts into a form not distinguishable by powder XRD from the 1.17-hydrate.

1. Introduction

Bedaquiline, **1**, is one of two important new drugs for the treatment of drug-resistant tuberculosis (TB). Bedaquiline is

research papers

marketed in the US as the fumarate salt (2) with the trade name Sirturo (Brigden et al., 2015). The fumarate salt is described in US Patent 8 546 428 (Hegyi et al., 2013). The citrate, sulfate, phosphate, and tartrate salts are described in two other patents (Zvatora, Dammer, Krejcik et al., 2016; Zvatora, Dammer, Ridvan et al., 2016). However, none of these salts has been structurally described in detail. For the fumarate, as well as one each of the two sulfate and citrate salts, well-resolved powder X-ray patterns have been reported, but the structures were not solved and no singlecrystal data are reported. For the remaining salts (the phosphate and tartrate salts, and the second sulfate and citrate polymorphs), the powder patterns indicate the samples to have either extremely small particle distributions or to be entirely amorphous. Detailed structural data are reported solely for the free base form of bedaquiline (Petit et al., 2007).

Bedaquiline features two basic N atoms that are amenable to protonation, *i.e.* the tertiary amine appended to the dangling ethylene group and the pyridine N atom. The two sites have distinctly different basicities and selective protonation of only the more basic amine site should be possible. Salts of both mono- and dicationic bedaquilinium ions can thus be formed, depending on the strength and amount of acid used for salt formation. The formation of cocrystals (with no or incomplete proton transfer) can also be imagined.

The NMR data reported in the patent publications indicate bedaquilinium fumarate to have a 1:1 anion-to-cation ratio. Whether the bedaquiline is protonated once or twice (and the fumarate deprotonated once or twice) had not been disclosed. For the sulfate salts, a 1:1 molar ratio of bedaquiline-tosulfuric acid was used, but the anion-to-cation ratio in the salt was not determined. The given reaction yields, assuming a 1:1 salt, are around 33%, which would allow formation of a 1:2, a 1:1, or a 2:1 salt. The patent specifically states a wide range for the molar ratio of bedaquiline to sulfuric acid: 'The molar ratio of bedaquiline:sulfuric acid may be in the range of 10:1 to 1:3, preferably 1:1, 2:1, and 1:2'. Similar statements have been made for the tartrate salts, one of the citrate salts, and the phosphate salt. No elemental analysis data are given to support any of the possible ratios, thus leaving the stoichiometry and the overall nature of the presented salts in question. The possibility of hydrate or solvate formation was also not properly addressed in the patent claims.

This lack of structural knowledge and even of basic chemical composition frustrates the understanding of the chemical, physical, and physiological properties of bedaquiline and its derivatives. To reduce this paucity of information on the bedaquiline system, there is interest in developing additional salts of bedaquiline and obtaining detailed analysis and structural data for these compounds, to better understand and possibly improve their properties, such as solubility, which in turn affect pharmacokinetics and dosage. Additional reasons for this study include finding a bedaquiline salt with improved stability and hygroscopicity.

2. Experimental

Melting points were determined using a Thomas Hoover Capillary Melting Point apparatus and are uncorrected. NMR data were collected in acetonitrile- d_3 (ACN- d_3) using a Bruker DRX-500 spectrometer and were referenced against the residual nondeuterated solvent peak.

Benzoic acid was purchased from Mallinckrodt, acetone from Fischer Chemicals, and acetonitrile from VWR Chemicals. Hydrochloride in methanol 1.25 M was obtained from Fluka. Bedaquiline fumarate was obtained from Johnson & Johnson. All chemicals were used as received without further purification.

Polarized light microscopy images were collected using an Olympus Series BX51TRF (Olympus America Inc., Melville, NY) polarized light microscope equipped with 12 V/100 W illumination; an Achromat 0.9 NA polarized-light condenser; Olympus Series UPlanFL N objectives: 40X/0.75 NA, 20X/ 0.50 NA, 10X/0.30 NA, and 4X/0.13 NA; an intermediate tube with variable position analyzer and compensator; and a trinocular viewing head with a Lumenera Series Infinity X

(Teledyne Lumenera, Ottawa, Ontario, Canada) digital camera using *Infinity* (Version 6.5.6) and *Infinity Analyze* software (Version 7.0.2.930, Build date 01-Feb-2020). A small portion of sample was placed on a cleaned microscope slide and a No. 1 1/2-cover glass placed over the sample. Mineral oil, USP (CAS: 8042-47-5), was allowed to cover the sample by capillarity. Images were acquired as a collection of three: (i) plane polarized light, (ii) crossed polarized light, and (iii) crossed polarized light with a first-order red compensator. Microscopy observations revealed crystal habits for bedaquilinium benzoate powders as birefringent platy anhedral agglomerates that are softly bound and easily dispersed under light pressure from a tungsten needle on the cover glass. A representative collection of images is given in the supporting information.

IR microspectroscopy experiments were conducted using a Smiths Detection (Danbury, CT) IlluminatIR 1.5 IR Microspectrometer accessory on an Olympus Series BX41TF polarized-light microscope (Olympus America Inc., Melville, NY), which provided the base optical platform. The IlluminatIR 1.5 is equipped with a gray-body ceramic IR source, a 60° Michelson Interferometer with a zinc-selenide (ZnSe) beam splitter, a 4 wavenumber (cm⁻¹) spectral resolution, and a 0.25×0.25 mm liquid-nitrogen-cooled mercury cadmium telluride (MCT) photoconductive detector, and the sample area was defined using a fixed circular 100 µm aperture. The IlluminatIR 1.5 is computer-interfaced using universal serial bus (USB) communications with Smiths Detection QualID App (Version 2.51, 2005) software. Advanced data processing was conducted using either Thermo Galactic spectral analysis software packages GRAMS/AI and SpectralID, or Thermo Fisher Scientific OMNIC software (Version 9.11.706, 2020). IR analyses were performed by reflection/absorption (R/A) using an all-reflecting objective (ARO, 15X, 0.88 NA). A small amount of sample was transferred to a low-E microscope slide (Smiths Detection P/N: 006-4013) and dispersed to a thin layer. IR microprobe analyses were conducted on what appeared microscopically to be a single crystal. An FT-IR spectral background was collected immediately prior to each sample spectral analysis.

Powder X-ray diffraction (XRD) data were collected in focusing mode on a PANalytical Empyrean X-ray diffractometer equipped with Bragg-Brentano HD optics, a sealedtube copper X-ray source ($\lambda = 1.54178$ Å), Soller slits on both the incident and receiving optics sides, and a PixCel3D Medipix detector. Samples were hand ground using an agate mortar and pestle, and packed into a silicon single-crystal zero-background sample holder, 16 mm wide and 0.25 mm deep. Antiscatter slits and divergence slits, as well as the mask, were chosen based on sample area and starting θ angle. Data were collected between 4 and 40° in 2θ under ambient conditions using the PANalytical Data Collector software (PANalytical, 2015). Rietveld refinements were performed against the 150 K models of the single-crystal structure data sets using HighScore (PANalytical, 2015) software. Refinement of preferred orientation was included using a spherical harmonics model. Plots of Rietveld fits for all compounds are given in the supporting information.

2.1. Synthesis and crystallization

2.1.1. Free base bedaquiline (1). The free base used during synthesis was prepared by extracting a CH₂Cl₂ solution of the fumarate three times with saturated NaHCO₃ solution (Rombouts *et al.*, 2016). The identity and purity of the free base thus afforded from the material supplied by Johnson & Johnson was verified using NMR spectroscopy [m.p. 175–176 °C; literature value 181°C (Zvatora, Dammer, Ridvan *et al.*, 2016)]. ¹H NMR (500 MHz, ACN-*d*₃): δ 8.82 (*s*, 1H), 8.66 (*d*, *J* = 8.7 Hz, 1H), 8.03 (*s*, 1H), 8.02 (*d*, *J* = 7.3 Hz, 1H), 7.87 (*d*, *J* = 8.0 Hz, 1H), 7.66 (*t*, *J* = 7.7 Hz, 4H), 7.49 (*t*, *J* = 7.7 Hz, 1H), 7.30 (*m*, 3H), 6.87 (*m*, 3H), 5.88 (*s*, 1H), 4.20 (*s*, 3H), 2.52 (*d*, *J* = 14.6 Hz, 1H), 2.01 (*m*, 2H), 1.89 (*m*, 7H).

research papers

Table 1Experimental details.

Experiments were carried out at 150 K. Absorption was corrected for by multi-scan methods (SADABS2016; Krause et al., 2015).

	1	2	3
Crystal data			
Chemical formula	$C_{32}H_{31}BrN_2O_2$	$C_{32}H_{32}BrN_2O_2^+ \cdot C_4H_3O_4^-$	C ₁₇ H ₁₄ BrNO
M_r	555.50	671.57	328.20
Crystal system, space group	Orthorhombic, $P2_12_12_1$	Monoclinic, $P2_1$	Orthorhombic, $P2_12_12_1$
a, b, c (Å)	11.1584 (8), 13.6425 (14), 36.061 (4)	16.4556 (6), 10.3205 (3), 20.1636 (8)	4.3606 (6), 10.820 (2), 29.886 (11)
α, β, γ (°)	90, 90, 90	90, 109.1832 (15), 90	90, 90, 90
$V(Å^3)$	5489.5 (9)	3234.2 (2)	1410.1 (6)
Z	8	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})^{31}$	1.53	1.32	2.91
Crystal size (mm)	$0.21 \times 0.13 \times 0.05$	$0.45 \times 0.37 \times 0.17$	$0.41\times0.06\times0.05$
Data collection			
Diffractometer	Bruker D8 Quest diffractometer with PhotonII charge-inte- grating pixel array detector (CPAD)	Bruker D8 Quest diffractometer with PhotonII charge-inte- grating pixel array detector (CPAD)	Bruker D8 Quest diffractometer with PhotonII charge-inte- grating pixel array detector (CPAD)
T_{\min}, T_{\max}	0.603, 0.747	0.438, 0.495	0.658, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	66520, 17893, 12296	115858, 24622, 18572	28030, 5125, 4504
R _{int}	0.052	0.040	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.770	0.771	0.768
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.111, 1.03	0.043, 0.117, 1.06	0.023, 0.057, 1.05
No. of reflections	17893	24622	5125
No. of parameters	675	837	196
No. of restraints	0	1	0
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent and constrained refinement	Only H-atom displacement para- meters refined
$\Delta \rho_{\text{min}} \Delta \rho_{\text{min}} (e \text{\AA}^{-3})$	0.48 - 0.58	1 23 -1 28	0.28 -0.38
Absolute structure	Flack x determined using 4397 quotients $[(I^+) - (I^-)]/$ $[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 7327 quotients $[(I^*) - (I^-)]/[(I^*) + (I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 1685 quotients $[(I^+) - (I^-)]/$ $[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.034 (3)	-0.0144 (14)	-0.011(3)

Crystal data Chemical formula M_r Crystal system, space group a, b, c (Å) α, β, γ (°) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta/\lambda)_{\max} (\text{\AA}^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S No. of reflections No. of parameters No. of restraints H-atom treatment

4a

 $\begin{array}{l} C_{32}H_{32}BrN_2O_2^{+}\cdot C_7H_5O_2^{-}\cdot 1.166H_2O\\ 698.70\\ Monoclinic, P2_1\\ 12.6384 (5), 7.9259 (3), 17.5249 (8)\\ 90, 99.8450 (17), 90\\ 1729.63 (12)\\ 2\\ Mo\ {\it K}\alpha\\ 1.24\\ 0.55\ \times\ 0.21\ \times\ 0.13\\ \end{array}$

Bruker D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) 0.638, 0.746 80228, 13080, 10456 0.049

0.770

0.032, 0.073, 1.03 13080 445 5 H atoms treated by a mixture of independent and constrained refinement $\begin{array}{l} C_{32}H_{32}BrN_2O_2^{+}\cdot C_7H_5O_2^{-}\cdot 0.742C_2H_3N\cdot H_2O\\ 726.10\\ Monoclinic, P2_1\\ 12.8661 (8), 8.0386 (5), 17.4704 (10)\\ 90, 101.093 (3), 90\\ 1773.13 (19)\\ 2\\ Cu \ {\it K}\alpha\\ 1.97\\ 0.31 \ \times \ 0.05 \ \times \ 0.05\\ \end{array}$

Bruker D8 Quest diffractometer with PhotonIII_C14 charge-integrating and photon counting pixel array detector
0.599, 0.754
39739, 7360, 6750

0.060 0.639

4b

0.035, 0.085, 1.06 7360 515 195 H atoms treated by a mixture of independent and constrained refinement

Table 1 (continued)

	4a	4b
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.36, -0.48	0.40, -0.50
Absolute structure	Flack x determined using 4051 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 2778 quotients $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.006 (3)	0.004 (8)

Computer programs: APEX3 (Bruker, 2019), SAINT (Bruker, 2019), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), shelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2020) and publcIF (Westrip, 2010).

Single crystals were grown by dissolving bedaquiline (30 mg, 0.054 mmol) in acetone (1 ml) in a 5 ml scintillation vial and the solution was allowed to evaporate slowly to obtain medium-sized plate-shaped crystals of **1**.

2.1.2. Decomposition of bedaquiline fumarate by sodium ethoxide. Sodium ethoxide (1.5 g, 22.0 mmol) was dissolved in EtOH (20 ml). The resulting solution was added to a solution of bedaquiline fumarate (5 g, 7.44 mmol) in ACN/EtOH (50 ml, 1:1 ν/ν). After 1 h, water was added slowly and the resulting mixture extracted with EtOAc. The combined organic layers were dried (MgSO₄) and then concentrated to provide a colorless crystalline material that was found by IR and NMR spectroscopies to not match free base bedaquiline. Individual crystals were identified as 3-benzyl-6-bromo-2-methoxyquinoline (3) by single-crystal X-ray diffraction, and no further analyses were performed.

2.1.3. Bedaquilinium fumarate (2). Bedaquiline (30 mg, 0.054 mmol) was mixed with fumaric acid (6.3 mg, 0.054 mmol) dissolved in acetone (1 ml) in a 10 ml scintillation vial. Propyl alcohol (5 ml) was then added and the mixture was allowed to evaporate slowly to obtain large colorless block-shaped crystals that were analyzed by single-crystal and powder X-ray diffraction. ¹H NMR (500 MHz, ACN- d_3): δ

8.68 (d, J = 8.3 Hz, 1H), 8.55 (s, 1H), 8.05 (d, J = 7.2 Hz, 1H), 7.97 (s, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.66 (m, 4H), 7.51 (t, J = 7.2 Hz, 1H), 7.32 (m, 3H), 6.89 (m, 3H), 6.32 (s, 2H), 5.89 (s, 1H), 4.21 (s, 3H), 3.02 (m, 1H), 2.69 (m, 1H), 2.24 (s, 7H), 2.09 (m, 2H).

2.1.4. Bedaquilinium benzoates 4a and 4b. Bedaquiline (30 mg, 0.054 mmol) was mixed with benzoic acid (6.7 mg, 0.055 mmol). The mixture was dissolved in acetone (2 ml) in a 5 ml scintillation vial and was allowed to evaporate. The 1.17-hydrate **4a** was obtained in the form of colorless rod-shaped crystals (m.p. 127–129 °C). ¹H NMR (500 MHz, ACN-*d*₃): δ 8.75 (*d*, *J* = 8.4 Hz, 1H), 8.67 (*s*, 1H), 8.12 (*d*, *J* = 7.1 Hz, 1H), 7.94 (*d*, *J* = 8.0 Hz, 1H), 7.86 (*m*, 3H), 7.75 (*d*, *J* = 8.0 Hz, 2H), 7.56 (*m*, 4H), 7.38 (*m*, 5H), 6.93 (*m*, 3H), 5.95 (*s*, 1H), 4.26 (*s*, 3H), 3.05 (*m*, 1H), 2.96 (*m*, 1H), 2.25 (*m*, 7H), 1.96 (*m*, 2H). An identical material with the same water content was obtained when crystallization was carried out from 2-propanol instead of acetone.

Bedaquiline (30 mg, 0.054 mmol) was mixed with benzoic acid (6.8 mg, 0.056 mmol) in acetonitrile (10 ml) and was allowed to evaporate slowly. The acetonitrile solvate mono-hydrate **4b** was obtained in the form of thin colorless needles (m.p. 127-129 °C).

Figure 2 IR spectra of bedaquilinium benzoate (4a) (blue) and bedaquiline free base (1) (red).

2.2. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1. The two benzoate salt structures **4a** and **4b** are isomorphous, differing from each other only in the nature of part of the solvent molecules and some slight shifts to other atoms, and they were refined against a common structural model, with the structure of **4b** being solved by isomorphous replacement from that of **4a**. The atom-naming scheme for the published bedaquiline free base structure (Petit *et al.*, 2007), as deposited in the Cambridge Structural Database (CSD; Groom *et al.*, 2016; refcode KIDWAW), was used for the remeasured 150 K data of free base bedaquiline **1** and was also adopted for the bedaquilininum cations in the two benzoate salts **4a** and **4b**, and fumarate salt **2**.

For powder X-ray data collection and refinement, see the *Experimental* (§2).

2.2.1. H-atom treatment. C-bound H atoms were added in calculated positions and refined using a riding model. C-H bond distances were constrained to 0.95 Å for aromatic C-H moieties, and to 1.00, 0.99, and 0.98 Å for aliphatic C-H, CH_2 , and CH₃ moieties, respectively. Alcohol O-H and ammonium NR_3HN-H bond distances were either freely refined (for 2) or were constrained to 0.84 and 1.00 Å, respectively. Methyl CH₃ and hydroxy H atoms were allowed to rotate but not to tip to best fit the experimental electron density. The positions of the carboxylate H atoms (in 2) were refined freely. The positions of the fully occupied water H atoms were refined freely and O-H distances were restrained to 0.84 (2) Å. The H atoms of the partially occupied water molecule in 4a were initially refined and O-H and H...H distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively, while a damping factor was applied. The position of water atom H6E (in 4a) was further restrained based on hydrogen-bonding considerations, *i.e.* to be hydrogen bonded to the pyridine H atom, with the $H \cdot \cdot \cdot N$ distance restrained to 2.35 (2) Å. In the final refinement cycles, the damping factor was removed and the H atoms were set to ride on the parent O atom. For all structures, the $U_{iso}(H)$ values were set to a multiple of $U_{eq}(C)$, being 1.5 for CH₃ and OH, and 1.2 for C-H, CH₂, and N-H groups, respectively.

2.2.2. Disorder modeling. In the structure of 4a, one fully occupied and one partially occupied water molecule are present in the lattice. The occupancy ratio refined to 0.166 (7). In 4b, the partially occupied water molecule is replaced by an approximately three-quarter-occupied acetonitrile molecule. In the absence of the acetonitrile molecule, the neighboring benzene ring of the benzoate anion tilts slightly to move towards the void left by the absent solvent molecule. The two disordered benzene moieties were restrained to have similar geometries. The U^{ij} components of the anisotropic displacement parameters (ADPs) for disordered atoms closer to each other than 2.0 Å were restrained to be similar. The ADPs of the ipso C atoms, which occupy nearly identical positions, were constrained to be identical. Subject to these conditions, the occupancy ratio refined to 0.742 (7):0.258 (7) in favor of the acetonitrile molecule being present.

3. Salt screening and methods

Salt screening is a complex and challenging endeavor involving potentially millions of experiments. For bases like bedaquiline, these experiments can involve up to 50 commonly used salt formers in various ratios, as well as crystallizations from up to 60 different solvents by varying temperature, concentration, agitation, pH, and other factors. Further mixtures of these solvents can be used. Antisolvent crystallization using these solvents is also of interest and introduces even more variables.

For bedaquiline, the first step in screening for additional salts involved recovering bedaquiline free base from the commercially available bedaquilinium fumarate. This was first attempted by deprotonation of the bedaquilinium cation of the fumarate salt using the base sodium ethoxide. However, the alkoxide, when used in excess, proved to be too strong a base and led to fragmentation of the bedaquiline molecule. One of the products of the decomposition reaction was isolated by crystallization and identified, by single-crystal X-ray diffraction, as 3-benzyl-6-bromo-2-methoxyquinoline (**3**) (Fig. 1) and its structure will be described below. The other half of the decomposition reaction was not recovered or identified, but is assumed to be the ketone elimination product

of the remaining bedaquiline fragment, 4-(dimethylamino)-1-(naphthalen-1-yl)butan-2-one. The reaction most likely proceeds through initial deprotonation of all acidic groups by the ethoxide, including the central alcohol of bedaquiline. The tertiary alkoxide thus formed can undergo a reverse Grignard reaction (Zook *et al.*, 1959), under elimination of the ketone and the carbanion of **3**. Using much less basic sodium bicarbonate as the neutralizing agent avoids this decomposition reaction. Bedaquiline free base could be recovered that way from the fumarate salt, following the procedure described by Rombouts *et al.* (2016), thus allowing us to proceed to use the free base in salt screening experiments (Fig. 1).

Because the fumarate, citrate, sulfate, phosphate, and tartrate salts were known, salt formation screening focused on the crystallization of salts such as acetate, benzoate, benzenesulfonate, hydrobromide, succinate (1:1 and 1:2), hydrochloride, tartrate (1:1 and 1:2), lactate, maleate (1:1 and 1:2), malate (1:1 and 1:2), and mesylate. In general, the crystallizations involved mixing stoichiometric amounts of bedaquiline with the acids at either 1:1 or 1:2 molar ratios in acetone, acetonitrile, tetrahydrofuran, and ethyl acetate, either with or without the antisolvents water and hexane. The solvents were evaporated either slowly or rapidly, and materials were typically first screened using polarized-light microscopy (PLM) to ensure that a crystalline material had formed, and that the sample was uniform. Samples that passed the first screening step were submitted for further analysis. Crystals were analyzed by NMR (dissolved in an appropriate solvent) to confirm the presence of both components in the material. In the next step, materials were further screened using IR microspectroscopy, to confirm that the material was indeed a new substance (a salt or a cocrystal), and not just a mixture of the two components. Although some investigators have advanced the theory that Raman spectroscopy is the best method for analysis and determination of salt formation (e.g. Kojima et al., 2010), we found IR microspectroscopy had better specificity than Raman microscopy for the bedaquiline free base and salts; therefore, screening materials via Raman methods was abandoned. IR microspectroscopy proved to be a superior method to determine the formation of bedaquilinium salts. Materials that passed these screening steps (PLM, NMR, and IR spectroscopy) were then analyzed by powder X-ray diffraction. Rietveld refinement was used to identify known crystal phases. For samples for which suitable crystals could be obtained, single-crystal X-ray diffraction was used to determine the structures of phases not yet structurally described.

Example IR spectra comparing bedaquilinium benzoate and free base bedaquiline are given in Fig. 2; see Fig. 3 for the synthesis. The spectra are distinctly different, indicating transformation of the free base into a material containing both benzoate and bedaquiline fragments. A range of bands in the fingerprint region indicate the presence of a bedaquiline component in both compounds. A shoulder near 1700 cm^{-1} in the bedaquiline benzoate spectrum can be assigned to the C=O stretch of benzoate, confirming the formation of the salt. Further evidence for the formation of a salt, rather than a simple mixture of the two starting materials, is provided by the absence of bands in the range $2830-2760 \text{ cm}^{-1}$. Tertiary amines (of which the free base is one) have a characteristic N-CH₂ in-phase stretch that occurs in this range (Colthup *et al.*, 1990). The bands in this range of the free base spectrum are not present in the bedaquiline benzoate spectrum, suggesting the formation of a salt. Note: the free base spectrum contains some spectral features due to ethanol, which was used in the synthesis process.

In the course of our investigations, we had been so far able to determine the single-crystal structures of bedaquilinium fumarate (2), the commercially available form of bedaquiline, as well as isolate and characterize two other previously unknown bedaquilinium salts: the mono-benzoate salt, in the form of its 1.17-hydrate (4a), and a mixed hydrate acetonitrile solvate (4b). Their structures, as well as that of the degradation product from reaction of bedaquilinium fumarate with sodium ethoxide, 3-benzyl-6-bromo-2-methoxyquinoline (3), will be described below. The structure of free base bedaquiline (1) was re-recorded at 150 K for easier comparison with the low-temperature data of 2, 4a, and 4b. Implications for the larger bedaquiline system will be discussed.

4. Results and discussion

3-Benzyl-6-bromo-2-methoxyquinoline (3), the solvolysis product from reaction of bedaquiline with sodium ethoxide, lacks an easy-to-identify NMR signature and was identified by single-crystal X-ray diffraction. It crystallized from acetonitrile in the orthorhombic and chiral space group $P2_12_12_1$ (Fig. 4). The starting bedaquilinium fumarate is a chiral compound and an enantiopure sample was used. This chiral information and all chiral centers are, however, lost in the degradation reaction to 3-benzyl-6-bromo-2-methoxyquinoline (3). In the solid state, the molecule does, however, exhibit chirality, and the crystal analyzed was found to be enantiopure, with a Flack parameter of -0.011 (3). In solution, the

Figure 4 The structure of decomposition product **3** (50% probability displacement ellipsoids).

Figure 5 Single-crystal structure of fumarate salt **2** (50% probability displacement ellipsoids).

material is expected to be a rapidly interconverting racemic mixture, as simple rotation of the benzyl group to the other side of the mean plane of the molecule creates the inversion-related enantiomer. Molecules of **3** are divided into two planar fragments: the benzyl group and the 6-bromo-2-methoxy-quinoline moiety. Both fragments are close to ideally flat, with r.m.s. deviations from planarity of only 0.0052 and 0.0194 Å, respectively. The methoxy group is thus ideally coplanar with the remainder of the bromoquinoline fragment. It points away from the benzyl CH₂ group to avoid steric interactions. The torsion angle between the two mean planes is 73.01 (4)°.

The structures of the three bedaquilinium salts, *i.e.* fumarate 2, and benzoates 4a and 4b, are substantially more com-

plicated (Figs. 5 and 6), but they share some commonalities. In all three salt structures, the bedaquilinium cation is singly protonated at the dimethylamino fragment, with 1:1 anion-tocation ratios. In the structure of **2**, the fumarate anions remain singly protonated hydrofumarate(1–) anions, thus being monoanionic, as are the benzoate anions. The quinoline N atoms remain unprotonated, even though there are additional acidic protons available in the structure of **2**. At first glance, this might be surprising, since many pyridinium salts of both benzoic and fumaric acids have been reported [973 pyridinium benzoate derivatives and 44 pyridinium fumarate salts are reported in the CSD (Groom *et al.*, 2016), accessed August 2020]. The behaviour is, however, in agreement with the pK_a

Single-crystal structures of benzoate salts of 4a (left) and 4b (right) (50% probability displacement ellipsoids). Hydrogen bonds are shown as turquoise dashed lines.

values of the acids and with the reduced basicity of the quinoline N atom of bedaquiline, compared to ordinary pyridine. The first pK_a of fumaric acid is 3.053, the second is 4.494, and that of benzoic acid is 4.202 (Martell & Smith, 1976), which are easily sufficient to protonate the amine moiety of bedaquiline [the pK_a of trialkylammonium ions are around 10–11 (Bioquest, 2020)]. The pK_a of the conjugated acid of bedaquiline protonated at the quinoline N atom is not reported but can be estimated from the known values for quinoline, pyridine, and 2-methoxypyridine, which are 4.9, 5.23, and 3.06, respectively (Bioquest, 2020). Methoxy substitution in the 2-position to the N atom substantially reduces the basicity of the N atom (the pK_a of the conjugated acid drops by 2.17 between pyridine and 2-methoxypyridine). Assuming other effects to be negligible yields a pK_a value of 2.73 for 2-methoxyquinolinium. The quinoline N atom of bedaquiline is thus not basic enough to be protonated by medium-strength acids, such as benzoic or fumaric acid, in agreement with the findings from the crystal structures for 2, 4a, and 4b. Stronger acids, such as mineral acids or maleic acid (first pK_a is 1.94; Bioquest, 2020), might be able to double protonate bedaquiline if used in sufficient excess. Experiments in this direction are ongoing in our laboratories.

All three salts do crystallize in the chiral monoclinic space group $P2_1$. The core of the bedaquilinium cation in the three structures is formed by the ethylene moiety of atoms C1 and C2, from which the four major substituents radiate off: the phenyl ring and the bromo(methoxy)quinoline group from C1, and the naphthyl and (dimethylamino)ethyl fragments from C2. The hydroxy group is also attached to C2, while C1 also carries a single H atom. Atoms C1 and C2 are also the chiral centers of the bedaquilinium cation, which were modeled to have R and S chiralities, respectively, in agreement with the reported absolute structure for free base bedaquiline (Petit *et al.*, 2007). The Flack parameters refined to -0.014 (1) for **2**, and to 0.006 (3) and 0.004 (8) for **4a** and **4b**, respectively, confirming that the crystals were enantiopure.

The arrangement of anions and cations, and packing interactions, however, vary substantially between the fumarate and the two benzoate salts. The fumarate salt crystallized in an anhydrous and unsolvated form. Two crystallographically unique ion pairs are present in the lattice (*i.e.* Z' = 2 for compound **2**). The structure obtained agrees with the reported powder patterns of commercially available bedaquilinium fumarate (see Fig. 7 for a Rietveld refinement plot).

The two newly isolated benzoate salts are distinctly different from **2**, both being solvates, but they are very similar to each other, and are indeed isomorphous (the acetonitrile solvate was solved by isomorphous replacement from the hydrate). Both structures feature one tightly bound water molecule (atom O5). A second interstitial site does, however, differ between the two phases. In **4a**, it is occupied by a second water molecule, which is partially occupied. In **4b**, on the other hand, this site is partially occupied by a disordered acetonitrile molecule, which in turn induces disorder in the phenyl ring of the benzoate anion [see *Refinement* (§2.2.2) for disorder details].

The ethane backbone of the bedaquiline core gives the cations a three-dimensional (3D) shape, but the individual

Figure 7

Powder XRD pattern (ambient temperature) of bedaquilinium fumarate (Johnson & Johnson) with a Rietveld refinement fit against the single-crystal structure of **2**. The room-temperature unit-cell parameters refined to a = 16.5879 (2), b = 10.4952 (8), c = 20.183 (2) Å, $\beta = 109.238$ (2)° and V = 3317.4 (4) Å³. Rietveld fits for **4a** and **4b** are given in the supporting information.

research papers

Table 2

Selected torsion angles () for free base	bedaquiline 1, fu	marate salt 2, and l	benzoate salts 4a and 4b.
---------------------------	-----------------	-------------------	----------------------	---------------------------

	$1^{a,b}$	2^b	$4a^a$	4b ^{<i>a</i>}
τ plane 1 <i>versus</i> plane 2 ^c	73.29 (7), 81.37 (7)	85.33 (9), 86.02 (8)	77.31 (6)	76.2 (1)
τ plane 2 versus plane 3 ^c	86.13 (8) 76.95 (7)	89.7 (1), 89.74 (9)	45.62 (6)	44.2 (1)
τ plane 1 versus plane 3 ^c	14.0 (1), 8.16 (9)	8.71 (3), 16.67 (4)	37.50 (6)	36.7 (1)
$\tau C1 - C2 - C3 - C4$	175.7 (3), 177.0 (3)	-63.8(3), 174.92(19)	166.84 (14)	165.1 (3)
τ C2-C3-C4-N1	58.7 (4), 63.0 (4)	137.2 (2), 133.7 (2)	164.04 (15)	165.5 (3)
τ C17-C1-C2-C3	169.0 (3), 178.8 (3)	169.7 (2), 171.38 (19)	174.44 (14)	174.1 (3)

Notes: (a) measured at 150 K; (b) Z' = 2; (c) plane 1 = 6-bromo-2-methoxyquinoline, plane 2 = phenyl, and plane 3 = naphthyl.

Table 3

Hydrogen-bond geometry (Å, °) for 1.						
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
O1−H1O···N1	0.84	1.94	2.696 (4)	150		
$C1-H1\cdots O2$	1.00	2.24	2.763 (4)	111		
$O3-H3O\cdots N3$	0.84	1.93	2.685 (4)	149		
C33-H33···O4	1.00	2.23	2.773 (4)	112		

aromatic fragments remain planar. Similar to **3**, the 6-bromo-2-methoxyquinoline moiety is planar, with the methoxy group pointing away from the core of the cation. The r.m.s. deviations from planarity are 0.1127 and 0.1363 for the two cations in **2** (Z' = 2), 0.1019 Å in **4a**, and 0.0922 Å in **4b**.

The ethane backbone and the malleable ethylamine fragment gives the bedaquilinium cations a high degree of conformational flexibility. Differing packing arrangements, induced by the presence (or absence) of varying anions and solvent molecules, led to a landscape of conformations observed for the cations in 2, 4a, and 4b, as well as free base bedaquiline 1. The dihedral angles between the mean planes of the 6-bromo-2-methoxy-quinoline fragment (plane 1), the phenyl ring (plane 2), and the naphthyl group (plane 3), as well as the torsion angles along the ethane backbone and the ethylamine fragment, are given in Table 2. Besides the obvious similarities between the values for isomorphous 4a and 4b, no general trend is observed. The conformations vary not only between the four structures, but even between independent molecules within the same structure (both free base 1 and fumarate 2 are Z' = 2 structures). The two C1-C2-C3-C4 torsion angles in fumarate salt 2, for example, are -63.8(3)and 174.92 (19)°, which are distinctly different from each other. However, some similarities can be observed: the interplanar angles between the phenyl and 6-bromo-2-methoxyquinoline planes are between 70 and 90° in all structures, and the torsion angles involving the ethane backbone and the ipso phenyl atom (C17-C1-C2-C3) are close to antiperiplanar ('trans') in all the compounds. No other similarities common to all four structures can be found and the overall trend is one of pronounced flexibility and variability.

While the geometries and conformations in the four bedaquiline structures do not follow any general trend, there are some differences between the geometries of free base bedaquiline and its salts that can be rationalized. Directional interactions that differ between the free base and the salts play a major role. In bedaquiline, only one actual hydrogen bond is

Table 4				
Hydrogen-bond	geometry	(Å,	°) for 2 .	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1A - H1AB \cdots O4A$	0.86 (4)	1.88 (4)	2.699 (3)	159 (4)
$O5A - H5A \cdots O4B$	1.04 (4)	1.58 (4)	2.603 (3)	169 (4)
$N1A - H1AN \cdots O3A$	0.98 (4)	1.68 (4)	2.641 (3)	163 (3)
$C1A - H1A \cdots O2A$	1.00	2.23	2.767 (3)	112
$C3A - H3AB \cdot \cdot \cdot Br1B^{i}$	0.99	3.01	3.850 (3)	143
$C5A - H5AA \cdots O1A^{ii}$	0.98	2.58	3.501 (3)	157
$C5A - H5AC \cdot \cdot \cdot Br1B^{i}$	0.98	2.82	3.612 (3)	139
$C26A - H26A \cdots O5B^{iii}$	0.95	2.54	3.459 (4)	163
$C34A - H34A \cdots O5B^{iii}$	0.95	2.52	3.379 (3)	151
$O1B - H1B \cdots O4B^{iv}$	0.89 (4)	1.88 (4)	2.741 (3)	160 (4)
$O6B - H6B \cdot \cdot \cdot O4A^{v}$	0.86 (5)	1.80 (5)	2.625 (3)	159 (4)
$N1B - H1BN \cdots O3B^{iv}$	0.85 (4)	1.83 (4)	2.632 (3)	158 (4)
$C5B-H5BA\cdotsO1B^{vi}$	0.98	2.42	3.337 (4)	156
$C5B-H5BB\cdots Br1A$	0.98	2.88	3.468 (3)	119
$C5B-H5BB\cdots O6A$	0.98	2.42	3.287 (4)	148

Symmetry codes: (i) x + 1, y, z + 1; (ii) $-x + 2, y + \frac{1}{2}, -z + 1$; (iii) x, y - 1, z; (iv) $-x + 1, y - \frac{1}{2}, -z$; (v) x, y + 1, z; (vi) $-x + 1, y + \frac{1}{2}, -z$.

present, and this is an intramolecular O-H···N hydrogen bond (Table 3). It induces the amine N atoms to turn towards the hydroxy group, thus enforcing a *gauche* geometry of the (dimethylamino)ethyl group (see torsion angle C2-C3-C4-N1 in Table 2). Intermolecular interactions between molecules in 1 are limited to weaker and less directional interactions, specifically Br...Br interactions and π -stacking, which had been discussed in detail by Petit et al. (2007). In the fumarate and benzoate salts 2 and 4, the opposite is observed. The amine moiety, being protonated, is unable to act as the acceptor for an $O-H \cdots N$ hydrogen bond, and it takes up the role of a hydrogen-bond donor towards the benzoate or fumarate anions. This releases the amine from the gauche conformation enforced by the intramolecular O-H···N hydrogen bond in 1, and the ethylamine instead extends into a more relaxed conformation, approaching anti in 4 and close to eclipsed in 2 (see torsion angle C2-C3-C4-N1 in Table 2). The hydroxy groups in the salts are freed up to also form intermolecular hydrogen bonds. In 4, they hydrogen bond with the fully occupied water molecule, and in 2 with a fumarate carboxylate group. The water molecule in 4 in turn extends hydrogen bonds to the O atoms of two neighboring benzoate anions, and the fumarate anions in 2 are involved in a series of hydrogen bonds among each other, forming an infinite chain of hydrogen-bonded anions along the *b*-axis direction (Fig. 8). Thus, one intramolecular hydrogen bond in free base bedaquiline 1 is converted into a whole series of strong intermolecular hydrogen bonds (Tables 4, 5 and 6), creating for the

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for 4a.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1 - H1B \cdots O5$	0.84	1.87	2.681 (2)	164
$O5-H5D\cdots O4^{i}$	0.90 (4)	1.85 (4)	2.724 (2)	163 (3)
$O5-H5E\cdots O3$	0.77(3)	1.96 (3)	2.724 (2)	172 (4)
$O6-H6E\cdots N2$	0.87	2.38	3.148 (13)	147
$N1-H1\cdots O4^{i}$	1.00	1.64	2.643 (2)	178
$C5-H5C\cdots Br1^{ii}$	0.98	3.09	3.910 (2)	142
C6-H6A···O3	0.98	2.53	3.465 (3)	161
$C6-H6B\cdots O6^{iii}$	0.98	2.28	3.249 (13)	169
C28−H28···O5 ⁱⁱ	0.95	2.59	3.421 (3)	146

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) -x + 2, $y - \frac{1}{2}$, -z; (iii) x - 1, y, z.

salts a much stronger cohesion between neighboring structural entities than what was observed in the free base structure. Weaker interactions that dominate for bedaquiline, such as $Br \cdots Br$ halogen bonds and π -stacking, are not observed for

Table 6					
Hydrogen-bond	geometry	(Å,	°)	for	4 b.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1B\cdots O5$	0.77	1.94	2.691 (4)	163
$O5-H5D\cdots O4^{i}$	0.86 (3)	1.89 (3)	2.738 (4)	168 (6)
$O5-H5E\cdots O3$	0.82(3)	1.92 (3)	2.734 (4)	172 (6)
$N1-H1\cdots O4^{i}$	1.00	1.62	2.619 (4)	178
$C5-H5C\cdots Br1^{ii}$	0.98	3.13	3.964 (4)	144
$C6-H6A\cdots O3$	0.98	2.63	3.562 (6)	159
C28−H28···O5 ⁱⁱ	0.95	2.66	3.498 (5)	148

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) -x + 2, $y - \frac{1}{2}$, -z.

the salts, but the strong hydrogen bonds are augmented by a range of other not-as-strong directional interactions, such as $C-H\cdots O$ and $C-H\cdots Br$ hydrogen bonds (see hydrogen-bond Tables 4, 5, and 6 for a full listing).

In the acetonitrile solvate **4b**, an H atom of the naphthyl group interacts in a $C-H\cdots N$ hydrogen-like bond with the

Figure 8

Hydrogen-bonding pattern in **2**. (Top) Chains along *b* created by hydrofumarate anions. For clarity, only the 3-dimethylazaniumyl-1-hydroxypropyl fragments of the cations are shown, and H atoms not involved in hydrogen bonds have been omitted. (Bottom) Segment of an entire ribbon, including full cations. Color coding: O, N, and Br atoms are shown with 50% probability displacement ellipsoids, with all other atoms in capped-stick mode and color coded by the symmetry equivalence of their anion and cation (*A* and *B* cations in light and dark green, and *A* and *B* anions in orange and red). Hydrogen bonds are shown as turquoise and red dashed lines.

Least-squares overlay of the structures of **4a** (red) and **4b** (blue) using the non-H atoms for one of the two ion pairs of the asymmetric unit (r.m.s. fit value = 0.152), ignoring water and solvent molecules, and disorder. When extending the fit to the atoms of both ion pairs of the unit cell, the r.m.s. value increases to 0.195, showing the lattice mismatch between **4a** and **4b**.

solvent molecule, when present. In its absence, the phenyl ring of the benzoate anion relaxes towards the void created, inducing disorder for the anion [see *Refinement* (§2.2.2) for details]. For the 1.17-hydrate **4a**, the partially occupied water molecule is hydrogen bonded to the pyridine N atom and acts as an acceptor for a $C-H\cdots O$ interaction. There is, however, no second possible hydrogen-bond acceptor near the partially occupied water molecule, and the second water H atom is not involved in any recognizable interaction. This is energetically

Table 7

150 K and room-temperature (RT) unit-cell dimensions for 1, 2, 4a, and 4b.

RT data were obtained from powder XRD patterns *via* Rietveld refinement (see supporting information for Rietveld plots).

	1 , 150 K	1, RT	2 , 150 K	2 , RT	
$ \begin{array}{c} a (\mathring{A}) \\ b (\mathring{A}) \\ c (\mathring{A}) \\ c (\mathring{A}) \\ \beta (^{\circ}) \\ V (\mathring{A} ^{3}) \\ \rho (Mg m^{-3}) \\ R_{wp} (\%) \\ R_{exp} (\%) \\ S \end{array} $	11.1584 (8) 13.6425 (14) 36.061 (4) 90 5489.5 (9) 1.344	11.230 (1) 13.766 (1) 36.455 (3) 90 5636 (1) 1.309 19.99 15.67 1.27	16.4556 (6) 10.3205 (3) 20.1636 (8) 109.1832 (15) 3234.2 (2) 1.379	16.5879 (2) 10.4952 (8) 20.183 (2) 109.238 (2) 3317.4 (4) 1.344 20.48 13.27 1.54	
	4a , 150 K	4a , RT	4b , 150 K	4b ,	RT ^a
$ \begin{array}{c} a (\text{\AA}) \\ b (\text{\AA}) \\ c (\text{\AA}) \\ c (\text{\AA}) \\ \rho (\text{\AA}) \\ \rho (\text{Mg m}^{-3}) \\ R_{\text{wp}} (\text{\%}) \\ R_{\text{exp}} (\text{\%}) \\ S \end{array} $	12.6384 (5) 7.9259 (3) 17.5249 (8) 99.8450 (17) 1729.63 (12) 1.342	12.7267 (4) 8.0157 (3) 17.6438 (7) 99.7928 (6) 1773.7 (1) 1.309 5.57 10.78 1.94	12.8661 (8) 8.0386 (5) 17.4704 (10) 101.093 (3) 1773.13 (19) 1.360	12.720 (1) 8.0094 (5) 17.626 (2) 99.836 (2) 1769.4 (3) 1.311 30.65 10.50 2.12	12.7242 (8) 8.0116 (6) 17.632 (1) 99.813 (1) 1771.2 (2) 1.361 28.65 14.26 2.01

Note: (a) data from two independent samples and Rietveld refinements.

unfavorable, which helps to explain why this position is occupied less than 20% of the time [the refined value is 16.6(7)%], while the other solvent water molecule, tightly hydrogen bonded on all sides, is fully occupied. Lack of space appears to be no issue, as the larger acetonitrile molecule in 4b has a higher occupancy of around three-quarters [refined value 74.2 (7)%]. Kinetic factors during crystal growth (a lack of water molecules during crystallization from mostly dry solvents for 4a, but no lack of acetonitrile molecules for 4b) seem to dominate. The presence or absence of either water or acetonitrile in this void does not appear to hinder continuation of crystal growth, while this cannot be said for the tightly incorporated O5 water molecule present in both structures, which appears to be essential for the formation of this structure. The larger size of acetonitrile versus water, and the low prevalence of the second water molecule in 4a, lead to a slightly larger unit-cell volume for 4b compared to 4a, i.e. 1773.13 (19) versus 1729.63 (12) Å³. The visually most obvious difference between the two structures is the difference in the β angle, which is expanded by slightly more than 1° in 4b, leading to a significant offset between atoms in the two structures when the unit cells are overlaid (Fig. 9). The same is evident when comparing the powder patterns of 4a and 4b simulated from the 150 K single-crystal data, which are distinctively different (see supporting information).

Observations based on powder XRD data indicate that the samples of **4b** quickly desolvate, even under ambient conditions. The powder patterns of **4b** more closely match the parameters of hydrate **4a** than would be expected for acetonitrile solvate **4b**, even if the data were collected on samples exposed to air only for a few minutes prior to data collection (Table 7). Rietveld refinements of samples of **4b** yield β angles that match those of **4a** (at both room temperature and 150 K),

and the room-temperature volume of **4b** is actually slightly smaller than that of **4a**, in agreement with the assumption that all the acetonitrile in the structure of **4b** is lost when exposed to the atmosphere, while the solvent water molecules of **4a**, being hydrogen bound, do remain in the lattice under these conditions. These observations will be further investigated in a more detailed upcoming study, focusing on a larger series of bedaquilinium salts, including their solvation properties, thermal stability, and responses to ambient moisture.

The structure of **2**, on the other hand, is solvent free. Like **4**, the main intermolecular interactions are strong hydrogen bonds, already briefly discussed, with the bedaquilinium cation always acting as a hydrogen-bond donor, and the hydrofumarate anions acting as both Hatom acceptors and donors. The quinoline N atom does not act as an acceptor for a hydrogen bond, in agreement with its reduced basicity, already discussed. Originating from the cation are $N-H\cdots O$ hydrogen bonds, formed by the ammonium cations, and O- $H\cdots O$ hydrogen bonds, originating from the alcohol moieties. The $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds from one cation are towards the two O atoms of the same fully deprotonated carboxylate group, yielding an $R_2^2(10)$ hydrogen-bonding graph-set motif. This motif is identical for the two crystallographically independent ion pairs in **2**. The remaining strong hydrogen bonds are between the hydrofumarate anions. The hydrogen-bond donors are the carboxylic acid groups of each hydrofumarate anion, while the hydrogen-bond acceptor is always the O atom also hydrogen bonded to the bedaquilinium alcohol group, thus tying fumarate anions together in a head-to-tail fashion, forming infinite chains that extend along the *b*-axis direction (Fig. 8). The individual hydrogen-bonding motifs for these hydrogen bonds are D(2). The hydrofumarate anion chains bridge between bedaquilinium cations connecting anions and cations into ribbons that extend along the *b*-axis direction. These strong hydrogen bonds in **2** are again augmented by a series of other not-as-strong directional interactions, such as $C-H\cdots O$ and $C-H\cdots Br$ hydrogen bonds (Table 4) that interconnect between ribbons to create a fully 3D network and structure. Segments of neighboring ribbons do also interdigitate with each other, further stabilizing the overall structure.

The arrangement of anions and cations in 4a and 4b, and their connection *via* hydrogen-bonding interactions, follows a similar pattern to that in 2, but it is augmented by the solvate water molecules, which play a similar role as the protonated fumarate carboxylic acid groups do in 2 in connecting anions and cations with each other into infinite ribbons (Fig. 10). Bedaquilinium cations and water molecules act as hydrogen-

Figure 10

Hydrogen-bonding pattern in **4a**. (Top) Chains along b created by benzoate anions and water molecules. For clarity, only the 3-dimethylazaniumyl-1hydroxypropyl fragments of the cations are shown, and H atoms not involved in hydrogen bonds have been omitted. (Bottom) Segment of an entire ribbon, including cations and partially occupied water molecules. Color coding: O, N, and Br atoms are shown with 50% probability displacement ellipsoids, and all other atoms are in capped-stick mode and color coded by the symmetry equivalence of their anion and cation (cations in dark green and benzoate anions in orange). Hydrogen bonds are shown as turquoise and red dashed lines.

research papers

bond donors and the benzoate anions act as hydrogen-bond acceptors. The $N-H \cdots O$ hydrogen bond from the cation is towards one O atom of the benzoate carboxylate group and the $O-H \cdots O$ hydrogen bond is towards the water molecule, which in turn is hydrogen bonded to the same benzoate O atom as the ammonium fragment. The $R_2^2(10)$ graph-set motif in **2** is thus converted in **4** into an $R_3^3(10)$ motif, but otherwise fulfils the same function as in 2, connecting the hydroxy and ammonium segments of one cation to the same carboxylate group. The fully occupied water molecules in 4 assume the role of the carboxylic acid groups in 2, acting as bridges between anions $[C_2^2(6)]$ hydrogen-bonding motif, creating infinite benzoate-water chains that extend along the *b*-axis direction. Wrapped around these chains, and connected to them via O- $H \cdots O$ and $N - H \cdots O$ hydrogen bonds, are the bedaquiline cations, thus creating wider ribbons of cations, anions, and solvent water molecules (Fig. 10), emulating the pattern already observed for 2. The partially occupied water molecules are located on the outer rim of the ribbon, hydrogen bonded to the quinoline N atom but not bridging or connecting between any structural entities.

The strong intermolecular interactions present in **4a** and **4b** do compensate for the presence of the only partially or not at all filled voids present, and the packing efficiency for the salts of **4** is comparable to that of free base bedaquiline. Indeed, the density for the 1.17-hydrate is, at 1.342 Mg m^{-3} , virtually identical to that of the free base of 1.344 Mg m^{-3} (both measured at 150 K), and the acetonitrile solvate is, at 1.360 Mg m^{-3} , even denser than the solvent-free base. The best packing efficiency is, however, observed for fumarate salt **2**, featuring a multitude of strong hydrogen bonds, and having neither incorporated solvent molecules nor unoccupied void space. Its density, at 150 K, is 1.379 Mg m^{-3} (Table 7).

Acknowledgements

This material is based on work supported by the National Science Foundation (NSF) through the Major Research Instrumentation Program, which provided funding for the single-crystal X-ray diffractometer.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical

Sciences (grant No. 1625543 to MZ); Bill and Melinda Gates Foundation (grant No. INV-017799 to SRB).

References

- Bioquest (2020). AAT Bioquest pK_a and pK_b Reference Table, https:// www.aatbio.com/data-sets/pka-and-pkb-reference-table, accessed August 21, 2020.
- Brigden, G., Hewison, C. & Varaine, F. (2015). Infect. Drug Resist. 8, 367–378.
- Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Colthup, N. B., Daly, L. H. & Wiberley, S. E. (1990). In *Introduction to Infrared and Raman Spectroscopy*, 3rd ed. New York: Academic Press Inc.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hegyi, J. F. A. L., Aelterman, W. A. A., Lang, Y. L., Stokbroekx, S. C. M., Leys, C., Van Remoortere, P. J. M. & Faure, A. (2013). US Patent 8 546 428, Janssen Pharmaceuticals, USA.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Kojima, T., Tsutsumi, S., Yamamoto, K., Ikeda, Y. & Moriwaki, T. (2010). Int. J. Pharm. **399**(1–2), 52–59.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Martell, A. E. & Smith, R. M. (1976). In *Critical Stability Constants*, Vols. 1–4. New York: Plenum Press.
- PANalytical (2015). *Data Collector* (XRD data collection software, Version 5.3.0.62) and *HighScore* (Version 4.5). PANalytical BV, Almelo, The Netherlands.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Petit, S., Coquerel, G., Meyer, C. & Guillemont, J. (2007). J. Mol. Struct. 837, 252–256.
- Rombouts, J. A., Veenboer, R. P., Villellas, C., Lu, P., Ehlers, A. W., Andries, K., Koul, A., Lill, H., Ruijter, E., Orru, R. V. A., Lammertsma, K., Bald, D. & Slootweg, J. C. (2016). *RSC Adv.* 6, 108708–108716.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zook, H. D., March, J. & Smith, D. F. (1959). J. Am. Chem. Soc. 81, 1617–1620.
- Zvatora, P., Dammer, O., Krejcik, L., Zvonicek, V. & Hert, J. (2016). Int. Patent WO/2016/198031A1, Zentiva, Czech Republic.
- Zvatora, P., Dammer, O., Ridvan, L., Lustig, P., Pekarek, T., Stefco, M., Krejcik, L. & Tkadlecova, M. (2016). Int. Patent WO/2016/ 058564, Zentiva, Czech Republic.

Acta Cryst. (2020). C76 [https://doi.org/10.1107/S2053229620013455]

Crystal structures of salts of bedaquiline

Mercy Okezue, Daniel Smith, Matthias Zeller, Stephen R. Byrn, Pamela Smith, Susan Bogandowich-Knipp, Dale K. Purcell and Kari L. Clase

Computing details

For all structures, data collection: *APEX3* (Bruker, 2019); cell refinement: *SAINT* (Bruker, 2019); data reduction: *SAINT* (Bruker, 2019); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015) and shelXle (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

1-(6-Bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)- 2-(naphthalen-1-yl)-1-phenylbutan-2-ol (1)

Crystal data

 $C_{32}H_{31}BrN_{2}O_{2}$ $M_{r} = 555.50$ Orthorhombic, $P2_{1}2_{1}2_{1}$ a = 11.1584 (8) Å b = 13.6425 (14) Å c = 36.061 (4) Å V = 5489.5 (9) Å³ Z = 8F(000) = 2304

Data collection

Bruker D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Radiation source: fine focus sealed tube X-ray source
Triumph curved graphite crystal monochromator
Detector resolution: 7.4074 pixels mm⁻¹ ω and phi scans

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.111$ S = 1.0317893 reflections 675 parameters 0 restraints $D_x = 1.344 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9979 reflections $\theta = 2.4-28.7^{\circ}$ $\mu = 1.53 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.21 \times 0.13 \times 0.05 \text{ mm}$

Absorption correction: multi-scan (SADABS2016; Krause *et al.*, 2015) $T_{min} = 0.603$, $T_{max} = 0.747$ 66520 measured reflections 17893 independent reflections 12296 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 33.2^{\circ}$, $\theta_{min} = 2.3^{\circ}$ $h = -14 \rightarrow 17$ $k = -20 \rightarrow 17$ $l = -55 \rightarrow 52$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0298P)^2 + 2.4789P] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ & (\Delta/\sigma)_{\text{max}} = 0.002 \\ & \Delta\rho_{\text{max}} = 0.48 \text{ e } \text{ Å}^{-3} \\ & \Delta\rho_{\text{min}} = -0.58 \text{ e } \text{ Å}^{-3} \end{split}$$

Absolute structure: Flack *x* determined using 4397 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: 0.034 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	-0.22418 (4)	0.59893 (4)	0.93403 (2)	0.04766 (11)	
01	0.3238 (2)	0.60084 (19)	0.79619 (6)	0.0300 (5)	
H1O	0.296203	0.640769	0.780645	0.045*	
O2	0.4828 (2)	0.72509 (17)	0.90856 (6)	0.0311 (5)	
N1	0.3008 (3)	0.7681 (3)	0.75701 (9)	0.0374 (7)	
N2	0.2968 (2)	0.7233 (2)	0.93579 (8)	0.0289 (6)	
C1	0.4337 (3)	0.5908 (2)	0.85326 (9)	0.0249 (6)	
H1	0.511656	0.613215	0.863960	0.030*	
C2	0.4218 (3)	0.6444 (2)	0.81522 (9)	0.0261 (6)	
C3	0.3911 (3)	0.7541 (2)	0.81996 (10)	0.0287 (7)	
H3A	0.311884	0.760086	0.832083	0.034*	
H3B	0.451320	0.784829	0.836451	0.034*	
C4	0.3885 (3)	0.8096 (3)	0.78309 (10)	0.0330 (7)	
H4A	0.368347	0.879127	0.787832	0.040*	
H4B	0.469185	0.807406	0.771700	0.040*	
C5	0.1807 (4)	0.8058 (4)	0.76442 (14)	0.0549 (12)	
H5A	0.181362	0.877472	0.762872	0.082*	
H5B	0.155422	0.785688	0.789317	0.082*	
H5C	0.124585	0.779366	0.746042	0.082*	
C6	0.3352 (5)	0.7891 (4)	0.71826 (12)	0.0540 (12)	
H6A	0.274637	0.761942	0.701453	0.081*	
H6B	0.413095	0.759038	0.712972	0.081*	
H6C	0.340535	0.860126	0.714641	0.081*	
C7	0.5377 (3)	0.6349 (2)	0.79184 (10)	0.0292 (7)	
C8	0.5303 (3)	0.5879 (3)	0.75814 (10)	0.0358 (8)	
H8	0.459085	0.553241	0.752149	0.043*	
C9	0.6254 (4)	0.5894 (3)	0.73209 (11)	0.0437 (9)	
H9	0.617529	0.555399	0.709222	0.052*	
C10	0.7269 (4)	0.6388 (3)	0.73966 (12)	0.0479 (10)	
H10	0.788893	0.641601	0.721614	0.058*	
C11	0.7426 (3)	0.6867 (3)	0.77407 (13)	0.0431 (10)	
C12	0.8498 (4)	0.7363 (4)	0.78199 (17)	0.0594 (14)	
H12	0.910315	0.740322	0.763505	0.071*	
C13	0.8689 (4)	0.7790 (4)	0.81573 (18)	0.0624 (14)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H13	0.942439	0.811591	0.820635	0.075*
C14	0.7811 (4)	0.7748 (3)	0.84279 (15)	0.0529 (11)
H14	0.795439	0.803479	0.866381	0.064*
C15	0.6736 (4)	0.7297 (3)	0.83590 (12)	0.0377 (8)
H15	0.613991	0.729114	0.854720	0.045*
C16	0.6489 (3)	0.6837 (3)	0.80140 (11)	0.0338 (8)
C17	0.4406 (3)	0.4791 (2)	0.85227 (9)	0.0271 (6)
C18	0.5242 (3)	0.4342 (3)	0.87547 (11)	0.0361 (8)
H18	0.578525	0.473635	0.889212	0.043*
C19	0.5296 (4)	0.3329 (3)	0.87886 (13)	0.0455 (10)
H19	0.586943	0.304062	0.894989	0.055*
C20	0.4523 (4)	0.2738 (3)	0.85897 (14)	0.0468 (10)
H20	0.455743	0.204480	0.861264	0.056*
C21	0.3706 (4)	0.3174 (3)	0.83584 (13)	0.0453 (10)
H21	0.317076	0.277449	0.821984	0.054*
C22	0.3643 (4)	0.4183 (3)	0.83226 (12)	0.0374 (8)
H22	0.307030	0.446401	0.815903	0.045*
C23	0 3375 (3)	0.6233(2)	0.88094 (9)	0.0255 (6)
C24	0.2215(3)	0.5925(2)	0.88015 (9)	0.0266 (6)
H24	0.196272	0 548059	0.861430	0.032*
C25	0.1375(3)	0.6260(2)	0.90703 (9)	0.022
C26	0.0151(3)	0.5984(3)	0.90691 (9)	0.0202(0)
H26	-0.014665	0.554893	0.888515	0.036*
C27	-0.0594(3)	0.6349(3)	0.000515 0.93353(11)	0.030 0.0333(7)
C28	-0.0190(3)	0.0947(3)	0.96125 (10)	0.0369 (8)
С28 H28	-0.073061	0.0997 (5)	0.979370	0.044*
C29	0.0990 (3)	0.724203 0.7270 (3)	0.96179 (10)	0.0342 (8)
U2) H20	0.0990 (3)	0.7270(3)	0.980477	0.041*
C30	0.120005 0.1804(3)	0.770477 0.6010(2)	0.93480 (9)	0.0270 (6)
C31	0.1604(3)	0.6911(2)	0.90978 (9)	0.0277(0)
C32	0.5080(3)	0.0911(2) 0.7945(3)	0.93649(11)	0.0200(0)
UJ2 Н32 Л	0.5181 (5)	0.7945 (5)	0.93049 (11)	0.057*
H32R	0.510203	0.764305	0.952400	0.057*
H32D	0.510295	0.704395	0.901050	0.057*
Br?	150310(4)	0.832443 0.52837(3)	0.935034 0.98077 (2)	0.037*
03	1.30319(4) 1.1137(2)	0.52857(5) 0.17437(18)	0.38077(2) 0.87033(7)	0.04094(11)
UJ H3O	1.1137 (2)	0.17457(10) 0.120544	0.87035(7)	0.051*
04	0.8318(2)	0.120544	0.05800 (8)	0.0422 (6)
N2	1.1504(2)	-0.0081(2)	0.93890(8) 0.80430(0)	0.0422(0) 0.0374(7)
NJ NJ	1.1394(3)	0.0081(2) 0.2025(2)	0.09439(9)	0.0374(7)
IN 4 C22	0.9804(3)	0.3923(2)	0.96460(6)	0.0303(7)
C35	0.9444 (3)	0.2072 (2)	0.09105 (9)	0.0293 (7)
ПЭЭ С24	0.839013	0.238280	0.900125	0.033
C34	0.9919(3)	0.1032(2)	0.88238 (9)	0.0291(6)
U33	0.9948 (3)	0.0909 (2)	0.91/12(9)	0.0321 (7)
пээд	1.030174	0.123/83	0.935591	0.039*
ПЭЭВ	0.913823	0.093086	0.928300	0.039*
C36	1.0347 (3)	-0.00/4 (3)	0.90853 (11)	0.0365 (8)
H36A	1.029756	-0.047/7/5	0.931298	0.044*

H36B	0.980637	-0.036456	0.889749	0.044*
C37	1.2456 (4)	-0.0081 (4)	0.92483 (14)	0.0522 (11)
H37A	1.327104	-0.004144	0.914792	0.078*
H37B	1.237028	-0.068711	0.939203	0.078*
H37C	1.230662	0.048388	0.940944	0.078*
C38	1.1821 (4)	-0.0913 (3)	0.86971 (13)	0.0510(11)
H38A	1.126162	-0.089017	0.848772	0.077*
H38B	1.170719	-0.152677	0.883403	0.077*
H38C	1.264538	-0.087986	0.860431	0.077*
C39	0.9167 (3)	0.1173 (2)	0.85070 (10)	0.0331 (8)
C40	0.9708 (4)	0.1040 (3)	0.81713 (11)	0.0480 (10)
H40	1.050579	0.126813	0.814025	0.058*
C41	0.9141 (5)	0.0580 (4)	0.78685 (12)	0.0572 (13)
H41	0.955036	0.052016	0.763861	0.069*
C42	0.8021 (4)	0.0226 (3)	0.79045 (11)	0.0489 (11)
H42	0.764721	-0.009785	0.770191	0.059*
C43	0.7401 (4)	0.0336 (3)	0.82435 (10)	0.0370 (8)
C44	0.6229 (4)	-0.0050(3)	0.82814 (12)	0.0438 (9)
H44	0.587964	-0.039705	0.808023	0.053*
C45	0.5592 (4)	0.0068 (3)	0.86000 (13)	0.0468 (10)
H45	0.481437	-0.020876	0.862275	0.056*
C46	0.6092 (4)	0.0603 (3)	0.88956 (11)	0.0389 (8)
H46	0.563583	0.070801	0.911439	0.047*
C47	0.7224 (3)	0.0971 (3)	0.88713 (9)	0.0328 (7)
H47	0.754336	0.132226	0.907619	0.039*
C48	0.7944 (3)	0.0846 (2)	0.85485 (10)	0.0319(7)
C49	0.9402 (3)	0.3399 (2)	0.85952 (10)	0.0283 (7)
C50	0.8419 (3)	0.4007 (3)	0.85705 (11)	0.0366 (8)
H50	0.777022	0.391304	0.873727	0.044*
C51	0.8348 (4)	0.4754 (3)	0.83090 (12)	0.0438 (9)
H51	0.766337	0.516697	0.830043	0.053*
C52	0.9274 (4)	0.4890 (3)	0.80626 (12)	0.0442 (9)
H52	0.922986	0.539544	0.788192	0.053*
C53	1.0272 (4)	0.4288 (3)	0.80792 (11)	0.0459 (10)
H53	1.091198	0.438060	0.790888	0.055*
C54	1.0343 (3)	0.3547 (3)	0.83440 (11)	0.0376 (8)
H54	1.103315	0.313947	0.835444	0.045*
C55	1.0098 (3)	0.3161 (2)	0.92410 (9)	0.0280 (6)
C56	1.1266 (3)	0.3448 (2)	0.92281 (9)	0.0298 (7)
H56	1.173876	0.328393	0.901803	0.036*
C57	1.1792 (3)	0.3992 (3)	0.95242 (9)	0.0291 (7)
C58	1.2989 (3)	0.4300 (3)	0.95237 (10)	0.0315 (7)
H58	1.350752	0.411765	0.932661	0.038*
C59	1.3406 (3)	0.4866 (3)	0.98087 (11)	0.0353 (7)
C60	1.2659 (4)	0.5160 (3)	1.01026 (10)	0.0410 (9)
H60	1.296029	0.556768	1.029467	0.049*
C61	1.1491 (4)	0.4850 (3)	1.01081 (10)	0.0414 (9)
H61	1.098304	0.504605	1.030619	0.050*

C62	1.1029 (3)	0.4246 (2)	0.98254 (10)	0.0320 (7)	
C63	0.9454 (3)	0.3401 (3)	0.95731 (10)	0.0316 (7)	
C64	0.7628 (4)	0.3276 (4)	0.99162 (13)	0.0553 (12)	
H64A	0.755306	0.398868	0.994016	0.083*	
H64B	0.803387	0.301156	1.013550	0.083*	
H64C	0.682908	0.298312	0.989498	0.083*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02814 (17)	0.0671 (3)	0.0478 (2)	-0.00323 (18)	0.00642 (17)	-0.0063 (2)
01	0.0292 (11)	0.0352 (12)	0.0256 (12)	-0.0012 (10)	-0.0035 (9)	-0.0023 (10)
02	0.0302 (13)	0.0367 (12)	0.0264 (11)	-0.0050 (10)	-0.0010 (10)	-0.0094 (10)
N1	0.0375 (18)	0.0485 (19)	0.0262 (15)	0.0042 (14)	-0.0004 (12)	0.0038 (14)
N2	0.0315 (15)	0.0329 (14)	0.0223 (13)	-0.0007 (11)	0.0021 (11)	-0.0026 (12)
C1	0.0232 (14)	0.0247 (15)	0.0269 (15)	-0.0009 (12)	0.0017 (11)	-0.0013 (13)
C2	0.0264 (15)	0.0260 (16)	0.0258 (16)	-0.0017 (12)	0.0012 (12)	-0.0015 (13)
C3	0.0282 (16)	0.0296 (17)	0.0285 (17)	0.0027 (13)	0.0001 (13)	-0.0026 (13)
C4	0.0321 (18)	0.0327 (18)	0.0344 (19)	0.0013 (14)	0.0026 (14)	0.0046 (15)
C5	0.037 (2)	0.078 (3)	0.050 (3)	0.010 (2)	-0.0086 (19)	0.005 (2)
C6	0.072 (3)	0.062 (3)	0.029 (2)	0.005 (2)	0.002 (2)	0.010 (2)
C7	0.0307 (17)	0.0271 (16)	0.0298 (17)	0.0035 (12)	0.0046 (13)	0.0022 (13)
C8	0.043 (2)	0.0351 (19)	0.0295 (17)	0.0049 (15)	0.0079 (14)	-0.0011 (15)
C9	0.051 (2)	0.042 (2)	0.037 (2)	0.0125 (19)	0.0171 (17)	0.0035 (18)
C10	0.046 (2)	0.052 (2)	0.045 (2)	0.013 (2)	0.023 (2)	0.0110 (19)
C11	0.033 (2)	0.040 (2)	0.056 (3)	0.0050 (15)	0.0146 (17)	0.0145 (19)
C12	0.033 (2)	0.059 (3)	0.086 (4)	-0.001 (2)	0.020 (2)	0.020 (3)
C13	0.033 (2)	0.059 (3)	0.096 (4)	-0.010 (2)	0.007 (2)	0.005 (3)
C14	0.036 (2)	0.052 (2)	0.071 (3)	-0.015 (2)	-0.004 (2)	0.007 (2)
C15	0.0329 (19)	0.0330 (19)	0.047 (2)	-0.0018 (15)	-0.0004 (16)	0.0034 (17)
C16	0.0319 (18)	0.0290 (18)	0.040 (2)	0.0031 (14)	0.0044 (15)	0.0076 (15)
C17	0.0270 (15)	0.0264 (16)	0.0279 (16)	0.0022 (13)	0.0045 (12)	-0.0035 (13)
C18	0.037 (2)	0.0321 (17)	0.039 (2)	0.0034 (14)	0.0005 (15)	0.0015 (15)
C19	0.041 (2)	0.036 (2)	0.059 (3)	0.0074 (16)	0.0006 (18)	0.0106 (19)
C20	0.043 (2)	0.0276 (18)	0.070 (3)	0.0073 (16)	0.014 (2)	0.0029 (19)
C21	0.043 (2)	0.0295 (19)	0.064 (3)	-0.0002 (16)	0.003 (2)	-0.0094 (18)
C22	0.038 (2)	0.0273 (18)	0.047 (2)	-0.0003 (14)	-0.0023 (16)	-0.0066 (16)
C23	0.0311 (16)	0.0241 (15)	0.0213 (15)	0.0004 (12)	0.0019 (12)	-0.0010 (12)
C24	0.0297 (15)	0.0251 (15)	0.0251 (15)	-0.0003 (13)	0.0014 (13)	-0.0024 (13)
C25	0.0264 (15)	0.0256 (16)	0.0265 (16)	0.0001 (12)	0.0001 (12)	0.0025 (12)
C26	0.0284 (16)	0.0324 (16)	0.0301 (16)	0.0025 (14)	0.0030 (13)	-0.0006 (14)
C27	0.0232 (15)	0.0424 (19)	0.0342 (18)	0.0026 (13)	0.0019 (14)	0.0022 (16)
C28	0.0317 (19)	0.049 (2)	0.0299 (18)	0.0033 (15)	0.0058 (14)	-0.0046 (15)
C29	0.0317 (18)	0.044 (2)	0.0270 (17)	0.0024 (15)	0.0028 (14)	-0.0069 (15)
C30	0.0316 (16)	0.0300 (16)	0.0220 (15)	0.0037 (12)	0.0000 (13)	0.0022 (14)
C31	0.0255 (15)	0.0282 (16)	0.0242 (15)	-0.0005 (12)	-0.0035 (12)	0.0007 (13)
C32	0.0321 (18)	0.047 (2)	0.0349 (18)	-0.0078 (15)	-0.0054 (15)	-0.0130 (16)
Br2	0.0435 (2)	0.0550(2)	0.0423 (2)	-0.00769 (19)	-0.00983 (19)	-0.00133 (19)

O3	0.0301 (12)	0.0305 (12)	0.0415 (14)	0.0025 (10)	0.0129 (11)	-0.0005 (11)
O4	0.0351 (14)	0.0499 (16)	0.0415 (16)	-0.0055 (12)	0.0175 (12)	-0.0080 (13)
N3	0.0394 (17)	0.0342 (17)	0.0387 (17)	0.0073 (13)	0.0039 (14)	-0.0059 (13)
N4	0.0492 (18)	0.0350 (15)	0.0253 (14)	0.0036 (14)	0.0091 (13)	0.0005 (12)
C33	0.0293 (16)	0.0318 (17)	0.0274 (17)	0.0002 (13)	0.0044 (13)	-0.0012 (13)
C34	0.0295 (16)	0.0280 (15)	0.0298 (16)	-0.0017 (13)	0.0078 (14)	-0.0003 (12)
C35	0.0337 (16)	0.0310 (16)	0.0316 (16)	0.0022 (15)	0.0063 (14)	0.0028 (13)
C36	0.0364 (19)	0.0334 (18)	0.040 (2)	0.0002 (14)	0.0039 (15)	0.0014 (15)
C37	0.040 (2)	0.058 (3)	0.059 (3)	0.0083 (18)	-0.0011 (19)	-0.009 (2)
C38	0.066 (3)	0.037 (2)	0.049 (2)	0.011 (2)	0.011 (2)	-0.0114 (19)
C39	0.043 (2)	0.0280 (18)	0.0279 (17)	-0.0008 (14)	0.0087 (14)	0.0006 (14)
C40	0.054 (3)	0.055 (2)	0.036 (2)	-0.013 (2)	0.0160 (18)	-0.0104 (19)
C41	0.075 (3)	0.066 (3)	0.031 (2)	-0.017 (2)	0.013 (2)	-0.014 (2)
C42	0.069 (3)	0.047 (2)	0.031 (2)	-0.009 (2)	0.0019 (18)	-0.0097 (18)
C43	0.047 (2)	0.0289 (17)	0.0348 (18)	-0.0035 (16)	-0.0022 (15)	-0.0009 (15)
C44	0.048 (2)	0.040 (2)	0.044 (2)	-0.0053 (17)	-0.0108 (18)	-0.0002 (17)
C45	0.045 (2)	0.042 (2)	0.053 (3)	-0.0093 (17)	-0.009 (2)	0.0095 (19)
C46	0.0363 (19)	0.042 (2)	0.039 (2)	-0.0012 (16)	0.0024 (16)	0.0106 (16)
C47	0.0379 (17)	0.0302 (16)	0.0302 (17)	-0.0001 (16)	0.0023 (14)	0.0024 (14)
C48	0.041 (2)	0.0246 (16)	0.0305 (17)	-0.0002 (14)	0.0021 (14)	0.0027 (13)
C49	0.0282 (16)	0.0276 (16)	0.0290 (17)	-0.0015 (13)	0.0010 (13)	-0.0028 (13)
C50	0.0339 (18)	0.0365 (19)	0.039 (2)	0.0036 (16)	0.0004 (15)	-0.0022 (17)
C51	0.045 (2)	0.041 (2)	0.044 (2)	0.0093 (18)	-0.0049 (17)	0.0024 (19)
C52	0.051 (2)	0.043 (2)	0.039 (2)	0.0023 (18)	-0.0076 (18)	0.0110 (17)
C53	0.041 (2)	0.058 (3)	0.039 (2)	0.0013 (18)	0.0032 (16)	0.0168 (18)
C54	0.0289 (18)	0.047 (2)	0.037 (2)	0.0062 (15)	0.0027 (14)	0.0085 (16)
C55	0.0308 (16)	0.0248 (14)	0.0283 (16)	0.0043 (13)	0.0044 (13)	0.0014 (12)
C56	0.0375 (18)	0.0282 (17)	0.0236 (16)	-0.0006 (13)	0.0062 (13)	-0.0008 (13)
C57	0.0353 (17)	0.0286 (16)	0.0234 (15)	0.0026 (14)	0.0032 (13)	0.0040 (14)
C58	0.0327 (18)	0.0343 (18)	0.0275 (17)	0.0014 (13)	0.0011 (13)	0.0023 (14)
C59	0.0399 (19)	0.0352 (18)	0.0309 (17)	-0.0005 (14)	-0.0068 (15)	0.0049 (16)
C60	0.055 (2)	0.042 (2)	0.0260 (17)	0.0029 (19)	-0.0049 (16)	-0.0027 (15)
C61	0.061 (3)	0.039 (2)	0.0234 (17)	0.0043 (18)	0.0039 (16)	-0.0042 (15)
C62	0.0422 (19)	0.0289 (16)	0.0250 (16)	0.0041 (14)	0.0035 (15)	0.0022 (14)
C63	0.0336 (17)	0.0299 (17)	0.0312 (18)	0.0020 (14)	0.0080 (14)	0.0022 (14)
C64	0.047 (3)	0.070 (3)	0.049 (3)	-0.002 (2)	0.030 (2)	-0.004 (2)

Geometric parameters (Å, °)

Br1—C27	1.903 (3)	Br2—C59	1.902 (4)
O1—C2	1.421 (4)	O3—C34	1.435 (4)
01—H10	0.8400	O3—H3O	0.8400
O2—C31	1.354 (4)	O4—C63	1.358 (4)
O2—C32	1.437 (4)	O4—C64	1.443 (4)
N1—C5	1.461 (5)	N3—C37	1.460 (6)
N1-C4	1.470 (5)	N3—C38	1.464 (5)
N1—C6	1.477 (5)	N3—C36	1.482 (5)
N2-C31	1.311 (4)	N4—C63	1.305 (5)

N2—C30	1.372 (4)	N4—C62	1.374 (5)
C1—C17	1.526 (4)	C33—C55	1.526 (5)
C1—C23	1.531 (4)	C33—C49	1.531 (5)
C1—C2	1.560 (5)	C33—C34	1.552 (5)
C1—H1	1.0000	С33—Н33	1.0000
$C^2 - C^3$	1 545 (5)	C_{34} C_{35}	1 546 (5)
$C_2 - C_7$	1,550 (5)	C_{34} C_{39}	1.510(5) 1.550(5)
$C_3 - C_4$	1.530(5)	$C_{35} - C_{36}$	1.526(5) 1.524(5)
C3—H3A	0.9900	C35—H35A	0.9900
C3—H3B	0.9900	C35—H35B	0.9900
C4—H4A	0.9900	C36_H36A	0.9900
C4—H4B	0.9900	C36—H36B	0.9900
C5H5A	0.9900	C37_H37A	0.9900
C5—H5B	0.9800	C37_H37R	0.9800
C5_H5C	0.9800	C37 H37C	0.9800
Сб. Нбл	0.9800	C_{38} H38A	0.9800
C6 H6P	0.9800	C38 H38P	0.9800
	0.9800	C30—1136B	0.9800
C_{0}	0.9800	$C_{30} = C_{40}$	0.9600
$C_{1} = C_{0}$	1.377(3)	$C_{39} = C_{40}$	1.303(3) 1.442(5)
C^{2}	1.449(3)	$C_{39} = C_{48}$	1.443(3)
C_{0}	1.417 (3)	C40 - C41	1.409 (0)
C8—H8	0.9500	C40—H40	0.9500
C9—C10	1.340 (7)	C41 - C42	1.34/ (/)
C9—H9	0.9500	C41—H41	0.9500
	1.413 (6)	C42—C43	1.412 (6)
C10—H10	0.9500	C42—H42	0.9500
	1.404 (7)	C43—C44	1.416 (6)
C11—C16	1.438 (5)	C43—C48	1.436 (5)
C12—C13	1.366 (8)	C44—C45	1.360 (6)
C12—H12	0.9500	С44—Н44	0.9500
C13—C14	1.384 (7)	C45—C46	1.407 (6)
С13—Н13	0.9500	C45—H45	0.9500
C14—C15	1.371 (6)	C46—C47	1.362 (5)
C14—H14	0.9500	C46—H46	0.9500
C15—C16	1.420 (6)	C47—C48	1.425 (5)
C15—H15	0.9500	C47—H47	0.9500
C17—C22	1.391 (5)	C49—C50	1.378 (5)
C17—C18	1.395 (5)	C49—C54	1.402 (5)
C18—C19	1.388 (5)	C50—C51	1.390 (6)
C18—H18	0.9500	С50—Н50	0.9500
C19—C20	1.382 (6)	C51—C52	1.376 (6)
С19—Н19	0.9500	С51—Н51	0.9500
C20—C21	1.372 (6)	C52—C53	1.385 (6)
C20—H20	0.9500	С52—Н52	0.9500
C21—C22	1.385 (5)	C53—C54	1.393 (5)
C21—H21	0.9500	С53—Н53	0.9500
С22—Н22	0.9500	С54—Н54	0.9500
C23—C24	1.361 (5)	C55—C56	1.362 (5)

C^{23} _C ³¹	1 435 (4)	C55_C63	1 435 (5)
$C_{23} = C_{31}$	1.433(4)	C56 C57	1.435(3) 1.426(5)
C24—C25	1.424 (4)	$C_{50} = C_{57}$	0.0500
C24—H24	0.9500	C36—H36	0.9500
C25—C26	1.416 (5)	057058	1.400 (5)
C25—C30	1.421 (5)	C57—C62	1.423 (5)
C26—C27	1.365 (5)	C58—C59	1.367 (5)
C26—H26	0.9500	C58—H58	0.9500
C27—C28	1.409 (5)	C59—C60	1.406 (6)
C28—C29	1.369 (5)	C60—C61	1.371 (6)
C28—H28	0.9500	С60—Н60	0.9500
C29—C30	1.418 (5)	C61—C62	1.409 (5)
С29—Н29	0.9500	C61—H61	0.9500
С32—Н32А	0.9800	С64—Н64А	0.9800
C32—H32B	0.9800	C64—H64B	0.9800
C_{32} H ₃₂ C	0.9800	C64 - H64C	0.9800
0.52 11.520	0.9000		0.9000
C2-01-H10	109 5	C34—O3—H3O	109 5
$C_{31} = 0^{2} = C_{32}^{32}$	1174(3)	C63 - 04 - C64	107.5 117.1(3)
$C_5 N1 C_4$	117.4(3)	C_{37} N3 C_{38}	117.1(3)
$C_5 N_1 C_6$	111.0(3) 110.1(4)	$C_{37} = N_{3} = C_{36}$	110.1(3)
C_{3} N1 C_{6}	110.1(4)	$C_{3} = 103 - C_{3} = 0.000$	111.1(3) 112.1(2)
C4 - NI - C0	111.0(3)	C_{30} N_{3} C_{30}	112.1(3)
$C_{31} = N_{2} = C_{30}$	117.1 (3)	C63—N4—C62	11/.5(3)
C17—C1—C23	109.9 (3)	C55—C33—C49	108.2 (3)
C17—C1—C2	116.8 (3)	C55—C33—C34	113.8 (3)
C23—C1—C2	112.2 (3)	C49—C33—C34	115.8 (3)
C17—C1—H1	105.7	С55—С33—Н33	106.1
C23—C1—H1	105.7	С49—С33—Н33	106.1
C2—C1—H1	105.7	С34—С33—Н33	106.1
O1—C2—C3	106.7 (3)	O3—C34—C35	106.7 (3)
O1—C2—C7	110.2 (3)	O3—C34—C39	109.5 (3)
C3—C2—C7	109.0 (3)	C35—C34—C39	111.8 (3)
O1—C2—C1	107.1 (3)	O3—C34—C33	107.0 (3)
C3—C2—C1	112.1 (3)	C35—C34—C33	111.3 (3)
C7—C2—C1	111.7 (3)	C39—C34—C33	110.3 (3)
C4-C3-C2	112.8 (3)	$C_{36} = C_{35} = C_{34}$	112.8 (3)
C4-C3-H3A	109.0	C_{36} C_{35} H_{35A}	109.0
$C_2 = C_3 = H_3 \Delta$	109.0	C_{34} C_{35} H_{35A}	109.0
C_{4} C_{3} H_{3} H_{3}	100.0	C36 C35 H35R	109.0
C_{1} C_{2} C_{2} H_{2} H_{2}	109.0	$C_{30} = C_{33} = H_{35B}$	109.0
	107.0	U25A C25 U25D	109.0
H3A—C3—H3B	107.8	H35A—C35—H35B	107.8
NI-C4-C3	112.2 (3)	N3-C36-C35	110.5 (3)
NI—C4—H4A	109.2	N3—C36—H36A	109.5
C3—C4—H4A	109.2	C35—C36—H36A	109.5
N1—C4—H4B	109.2	N3—C36—H36B	109.5
C3—C4—H4B	109.2	С35—С36—Н36В	109.5
H4A—C4—H4B	107.9	H36A—C36—H36B	108.1
N1—C5—H5A	109.5	N3—C37—H37A	109.5
N1—C5—H5B	109.5	N3—C37—H37B	109.5

H5A—C5—H5B	109.5	H37A—C37—H37B	109.5
N1—C5—H5C	109.5	N3—C37—H37C	109.5
H5A—C5—H5C	109.5	Н37А—С37—Н37С	109.5
H5B—C5—H5C	109.5	Н37В—С37—Н37С	109.5
N1—C6—H6A	109.5	N3—C38—H38A	109.5
N1—C6—H6B	109.5	N3—C38—H38B	109.5
H6A—C6—H6B	109.5	H38A—C38—H38B	109.5
N1—C6—H6C	109.5	N3—C38—H38C	109.5
H6A—C6—H6C	109.5	H38A—C38—H38C	109.5
H6B—C6—H6C	109.5	H38B—C38—H38C	109.5
C8—C7—C16	118.4 (3)	C40—C39—C48	118.0 (4)
C8—C7—C2	118.0 (3)	C40—C39—C34	117.9 (3)
C16—C7—C2	123.2 (3)	C48—C39—C34	124.1 (3)
C7—C8—C9	122.2 (4)	C39—C40—C41	123.2 (4)
С7—С8—Н8	118.9	C39—C40—H40	118.4
C9—C8—H8	118.9	C41—C40—H40	118.4
C10—C9—C8	120.2 (4)	C42-C41-C40	120.1 (4)
C10-C9-H9	119.9	C42 - C41 - H41	119.9
C8—C9—H9	119.9	C40—C41—H41	119.9
C9-C10-C11	120 9 (4)	C41 - C42 - C43	1200(4)
C9-C10-H10	119.5	C41 - C42 - H42	120.0
C11—C10—H10	119.5	C43 - C42 - H42	120.0
C12-C11-C10	120.4 (4)	C42 - C43 - C44	119.8 (4)
C12 - C11 - C16	1196(4)	C42 - C43 - C48	120.5(4)
C10-C11-C16	119.9 (4)	C44 - C43 - C48	1197(4)
C13 - C12 - C11	121 3 (4)	C45-C44-C43	1213(4)
C13 - C12 - H12	119.4	C45 - C44 - H44	1193
C11 - C12 - H12	119.1	C43—C44—H44	119.3
C12 - C13 - C14	120.0 (4)	C44 - C45 - C46	119.6(4)
C12—C13—H13	120.0	C44-C45-H45	120.2
C14—C13—H13	120.0	C46—C45—H45	120.2
C15-C14-C13	120.7 (5)	C47 - C46 - C45	120.7(4)
C15—C14—H14	1197	C47—C46—H46	119.7
C13—C14—H14	119.7	C45—C46—H46	119.7
C14-C15-C16	121.8 (4)	C46-C47-C48	122.1 (4)
C14-C15-H15	119.1	C46—C47—H47	119.0
C16—C15—H15	119.1	C48—C47—H47	119.0
C_{15} C_{16} C_{11}	116 5 (4)	C47 - C48 - C43	116.5(3)
C_{15} C_{16} C_{7}	125.3 (3)	C47 - C48 - C39	125.5(3)
$C_{11} - C_{16} - C_{7}$	118 2 (4)	C43 - C48 - C39	128.0(3)
C^{22} C^{17} C^{18}	117.3 (3)	C_{50} C_{49} C_{54}	117.9(3)
$C_{22} = C_{17} = C_{10}$	1252(3)	C_{50} C_{49} C_{33}	117.6(3)
C18 - C17 - C1	1173(3)	C54 - C49 - C33	1242(3)
C19 - C18 - C17	121.3 (4)	C49—C50—C51	12.0(4)
C19—C18—H18	119.4	C49—C50—H50	119.0
C17—C18—H18	119.4	C51—C50—H50	119.0
C20—C19—C18	120.5 (4)	C52—C51—C50	119.6 (4)
C20—C19—H19	119.7	C52—C51—H51	120.2

C18—C19—H19	119.7	С50—С51—Н51	120.2
C21—C20—C19	118.5 (4)	C51—C52—C53	119.7 (4)
C21—C20—H20	120.7	С51—С52—Н52	120.1
C19—C20—H20	120.7	С53—С52—Н52	120.1
C20—C21—C22	121.4 (4)	C52—C53—C54	120.4 (4)
C20—C21—H21	119.3	С52—С53—Н53	119.8
C22—C21—H21	119.3	С54—С53—Н53	119.8
C21—C22—C17	120.9 (4)	C53—C54—C49	120.3 (3)
C21—C22—H22	119.5	С53—С54—Н54	119.8
С17—С22—Н22	119.5	C49—C54—H54	119.8
C24—C23—C31	116.5 (3)	C56—C55—C63	116.2 (3)
C_{24} C_{23} C_{1}	124.3 (3)	C56—C55—C33	123.8 (3)
C31—C23—C1	119.2 (3)	C63—C55—C33	119.8 (3)
C23—C24—C25	120.8 (3)	C55—C56—C57	121.2 (3)
C23—C24—H24	119.6	С55—С56—Н56	119.4
C25—C24—H24	119.6	С57—С56—Н56	119.4
C26—C25—C30	119.6 (3)	C58—C57—C62	119.9 (3)
$C_{26} = C_{25} = C_{24}$	123.1 (3)	C58—C57—C56	123.2(3)
C_{30} C_{25} C_{24}	117.3 (3)	C62—C57—C56	116.9 (3)
C_{27} C_{26} C_{25}	119.2 (3)	C59 - C58 - C57	119.6(3)
$C_{27} = C_{26} = H_{26}$	120.4	C59—C58—H58	120.2
C_{25} C_{26} H_{26}	120.4	C57—C58—H58	120.2
$C_{26} = C_{27} = C_{28}$	122.2 (3)	$C_{58} - C_{59} - C_{60}$	120.2 1217(4)
$C_{26} = C_{27} = Br_{1}$	120.1(3)	C58—C59—Br2	1195(3)
$C_{28} = C_{27} = Br_1$	1177(3)	$C60 - C59 - Br^2$	119.0(3) 118.8(3)
$C_{29} = C_{28} = C_{27}$	119 3 (3)	C61 - C60 - C59	119.1 (4)
$C_{29} = C_{28} = H_{28}$	120.4	$C_{61} - C_{60} - H_{60}$	120.4
C27—C28—H28	120.4	C59—C60—H60	120.1
$C_{28} = C_{29} = C_{30}$	120.8 (3)	C60 - C61 - C62	121.2 (4)
$C_{28} = C_{29} = H_{29}$	119.6	C60 - C61 - H61	119.4
C_{30} C_{29} H_{29}	119.6	C62 - C61 - H61	119.1
N2-C30-C29	118.5 (3)	N4—C62—C61	119.3 (3)
$N_2 - C_{30} - C_{25}$	122.5 (3)	N4—C62—C57	122.3(3)
$C_{29} - C_{30} - C_{25}$	118.9 (3)	$C_{61} - C_{62} - C_{57}$	118.4 (4)
N2-C31-O2	119.0 (3)	N4—C63—O4	119.4 (3)
N2-C31-C23	125.8 (3)	N4—C63—C55	125.7(3)
02-C31-C23	115.2 (3)	04-C63-C55	114.9 (3)
02-C32-H32A	109.5	04—C64—H64A	109.5
02—C32—H32B	109.5	04—C64—H64B	109.5
H32A—C32—H32B	109.5	H64A—C64—H64B	109.5
02-C32-H32C	109.5	04-C64-H64C	109.5
H32A—C32—H32C	109.5	H64A—C64—H64C	109.5
H32B-C32-H32C	109.5	H64B—C64—H64C	109.5
1020 002 11520	109.0		109.0
C17—C1—C2—O1	52.3 (4)	C55—C33—C34—O3	-63.8 (3)
C23—C1—C2—O1	-75.9 (3)	C49—C33—C34—O3	62.5 (4)
C17—C1—C2—C3	169.0 (3)	C55—C33—C34—C35	52.5 (4)
C23—C1—C2—C3	40.8 (4)	C49—C33—C34—C35	178.8 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C1—C2—C7	-68.4 (4)	C55—C33—C34—C39	177.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—C1—C2—C7	163.4 (3)	C49—C33—C34—C39	-56.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C2—C3—C4	-67.4 (3)	O3—C34—C35—C36	-66.6 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C2—C3—C4	51.6 (4)	C39—C34—C35—C36	53.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3—C4	175.7 (3)	C33—C34—C35—C36	177.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N1—C4—C3	83.1 (4)	C37—N3—C36—C35	84.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—N1—C4—C3	-154.1 (3)	C38—N3—C36—C35	-152.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—N1	58.7 (4)	C34—C35—C36—N3	63.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C2—C7—C8	-0.5 (4)	O3—C34—C39—C40	-5.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7—C8	-117.3 (3)	C35—C34—C39—C40	-123.9(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C7—C8	118.3 (3)	C33—C34—C39—C40	111.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—C2—C7—C16	171.3 (3)	O3—C34—C39—C48	171.9 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C2—C7—C16	54.5 (4)	C35—C34—C39—C48	53.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C7—C16	-69.8 (4)	C33—C34—C39—C48	-70.7 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C7—C8—C9	-2.8(5)	C48—C39—C40—C41	-1.6 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C7—C8—C9	169.4 (3)	C34—C39—C40—C41	176.3 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C8—C9—C10	-0.8 (6)	C39—C40—C41—C42	-1.6 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—C10—C11	2.5 (6)	C40—C41—C42—C43	1.5 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—C12	178.7 (4)	C41—C42—C43—C44	-179.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C10—C11—C16	-0.6 (6)	C41—C42—C43—C48	1.6 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12-C13	-176.8 (5)	C42—C43—C44—C45	-178.0 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16—C11—C12—C13	2.4 (7)	C48—C43—C44—C45	1.2 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—C13—C14	-0.7 (8)	C43—C44—C45—C46	1.5 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C13—C14—C15	-1.2 (8)	C44—C45—C46—C47	-2.5 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C14—C15—C16	1.5 (7)	C45—C46—C47—C48	0.8 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C16—C11	0.2 (6)	C46—C47—C48—C43	1.9 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—C16—C7	-179.7 (4)	C46—C47—C48—C39	-177.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C16—C15	-2.1 (6)	C42—C43—C48—C47	176.4 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C16-C15	177.2 (4)	C44—C43—C48—C47	-2.8 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C16—C7	177.8 (4)	C42—C43—C48—C39	-4.7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C16-C7	-2.9 (5)	C44—C43—C48—C39	176.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C7—C16—C15	-175.6 (4)	C40—C39—C48—C47	-176.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C7-C16-C15	12.6 (6)	C34—C39—C48—C47	5.7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C7—C16—C11	4.6 (5)	C40—C39—C48—C43	4.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C7-C16-C11	-167.3 (3)	C34—C39—C48—C43	-173.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—C1—C17—C22	81.5 (4)	C55—C33—C49—C50	-91.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C17-C22	-47.9 (5)	C34—C33—C49—C50	139.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—C1—C17—C18	-93.4 (4)	C55—C33—C49—C54	82.5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2-C1-C17-C18	137.3 (3)	C34—C33—C49—C54	-46.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22-C17-C18-C19	-1.0 (6)	C54—C49—C50—C51	-0.6 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C17—C18—C19	174.2 (4)	C33—C49—C50—C51	173.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17—C18—C19—C20	0.5 (6)	C49—C50—C51—C52	0.8 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—C19—C20—C21	0.1 (7)	C50—C51—C52—C53	-0.5 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19—C20—C21—C22	-0.1 (7)	C51—C52—C53—C54	-0.1 (7)
C18—C17—C22—C21 0.9 (6) C50—C49—C54—C53 0.0 (6) C1—C17—C22—C21 -173.9 (4) C33—C49—C54—C53 -174.0 (4) C17—C1—C23—C24 -54.5 (4) C49—C33—C55—C56 -63.1 (4)	C20—C21—C22—C17	-0.4 (7)	C52—C53—C54—C49	0.4 (6)
C1-C17-C22-C21 -173.9 (4) $C33-C49-C54-C53$ -174.0 (4) $C17-C1-C23-C24$ -54.5 (4) $C49-C33-C55-C56$ -63.1 (4)	C18—C17—C22—C21	0.9 (6)	C50—C49—C54—C53	0.0 (6)
C17—C1—C23—C24 -54.5 (4) C49—C33—C55—C56 -63.1 (4)	C1-C17-C22-C21	-173.9 (4)	C33—C49—C54—C53	-174.0 (4)
	C17—C1—C23—C24	-54.5 (4)	C49—C33—C55—C56	-63.1 (4)

C2—C1—C23—C24	77.3 (4)	C34—C33—C55—C56	67.1 (4)
C17—C1—C23—C31	126.0 (3)	C49—C33—C55—C63	112.6 (3)
C2-C1-C23-C31	-102.2 (3)	C34—C33—C55—C63	-117.2 (3)
C31—C23—C24—C25	-0.6 (5)	C63—C55—C56—C57	-2.4 (5)
C1—C23—C24—C25	179.8 (3)	C33—C55—C56—C57	173.4 (3)
C23—C24—C25—C26	178.3 (3)	C55—C56—C57—C58	179.8 (3)
C23—C24—C25—C30	-1.1 (5)	C55—C56—C57—C62	-2.1 (5)
C30—C25—C26—C27	0.1 (5)	C62—C57—C58—C59	-1.7 (5)
C24—C25—C26—C27	-179.3 (3)	C56—C57—C58—C59	176.3 (3)
C25—C26—C27—C28	0.1 (5)	C57—C58—C59—C60	-0.8 (5)
C25—C26—C27—Br1	-180.0 (3)	C57—C58—C59—Br2	180.0 (3)
C26—C27—C28—C29	-0.3 (6)	C58—C59—C60—C61	1.7 (6)
Br1-C27-C28-C29	179.8 (3)	Br2-C59-C60-C61	-179.1 (3)
C27—C28—C29—C30	0.2 (6)	C59—C60—C61—C62	-0.1 (6)
C31—N2—C30—C29	-177.9 (3)	C63—N4—C62—C61	177.2 (3)
C31—N2—C30—C25	-0.3 (5)	C63—N4—C62—C57	-2.6 (5)
C28—C29—C30—N2	177.8 (3)	C60—C61—C62—N4	177.9 (3)
C28—C29—C30—C25	0.0 (5)	C60—C61—C62—C57	-2.4 (5)
C26—C25—C30—N2	-177.8 (3)	C58—C57—C62—N4	-177.0 (3)
C24—C25—C30—N2	1.6 (5)	C56—C57—C62—N4	4.8 (5)
C26—C25—C30—C29	-0.2 (5)	C58—C57—C62—C61	3.3 (5)
C24—C25—C30—C29	179.3 (3)	C56—C57—C62—C61	-174.9 (3)
C30—N2—C31—O2	176.5 (3)	C62—N4—C63—O4	178.1 (3)
C30—N2—C31—C23	-1.7 (5)	C62—N4—C63—C55	-2.6 (5)
C32—O2—C31—N2	0.6 (5)	C64—O4—C63—N4	-0.1 (5)
C32—O2—C31—C23	179.0 (3)	C64—O4—C63—C55	-179.4 (3)
C24—C23—C31—N2	2.1 (5)	C56—C55—C63—N4	5.1 (5)
C1-C23-C31-N2	-178.3 (3)	C33—C55—C63—N4	-170.9 (3)
C24—C23—C31—O2	-176.1 (3)	C56—C55—C63—O4	-175.6 (3)
C1—C23—C31—O2	3.5 (4)	C33—C55—C63—O4	8.4 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
0.84	1.94	2.696 (4)	150
1.00	2.24	2.763 (4)	111
0.84	1.93	2.685 (4)	149
1.00	2.23	2.773 (4)	112
	<i>D</i> —H 0.84 1.00 0.84 1.00	D—H H···A 0.84 1.94 1.00 2.24 0.84 1.93 1.00 2.23	D—H H···A D···A 0.84 1.94 2.696 (4) 1.00 2.24 2.763 (4) 0.84 1.93 2.685 (4) 1.00 2.23 2.773 (4)

[4-(6-Bromo-2-methoxyquinolin-3-yl)-3-hydroxy-3-(naphthalen-1-yl)-4-phenylbutyl]dimethylazanium 3-

carboxyprop-2-enoate (2)

Crystal data	
$C_{32}H_{32}BrN_2O_2^+ C_4H_3O_4^-$	c = 20.1636 (8) Å
$M_r = 671.57$	$\beta = 109.1832 (15)^{\circ}$
Monoclinic, $P2_1$	V = 3234.2 (2) Å ³
a = 16.4556 (6) Å	Z = 4
b = 10.3205 (3) Å	F(000) = 1392

 $D_{\rm x} = 1.379 {\rm ~Mg} {\rm ~m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9891 reflections $\theta = 2.9 - 31.4^{\circ}$

Data collection

Bruker D8 Quest
diffractometer with PhotonII charge-integrating
pixel array detector (CPAD)
Radiation source: fine focus sealed tube X-ray
source
Triumph curved graphite crystal
monochromator
Detector resolution: 7.4074 pixels mm ⁻¹
ω and phi scans

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.117$ *S* = 1.06 24622 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ 837 parameters $\Delta \rho_{\rm max} = 1.23 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint $\Delta \rho_{\rm min} = -1.28 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier al., 2013) map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	l isotropic or equivalent	isotropic displacement	parameters ($(Å^2)$
-----------------------------------	---------------------------	------------------------	--------------	---------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1A	0.58678 (3)	0.47935 (4)	0.22528 (2)	0.06533 (14)	
O1A	0.82483 (12)	-0.01085 (19)	0.51792 (10)	0.0278 (3)	
H1AB	0.828 (2)	0.039 (4)	0.485 (2)	0.042*	
O2A	0.77472 (16)	0.3652 (3)	0.64605 (13)	0.0484 (6)	
O3A	0.93472 (13)	0.2628 (2)	0.42487 (10)	0.0344 (4)	
O4A	0.84664 (14)	0.09248 (19)	0.40198 (9)	0.0349 (4)	
O5A	0.81194 (14)	0.52568 (19)	0.20888 (11)	0.0350 (4)	
H5A	0.763 (3)	0.555 (4)	0.164 (2)	0.052*	
O6A	0.76176 (14)	0.3298 (2)	0.16731 (10)	0.0373 (4)	
N1A	1.03839 (12)	0.1521 (2)	0.53959 (11)	0.0244 (4)	
H1AN	0.993 (2)	0.179 (4)	0.4961 (19)	0.029*	
N2A	0.73312 (15)	0.4780 (3)	0.54157 (16)	0.0405 (6)	

 $\mu = 1.32 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.45 \times 0.37 \times 0.17 \text{ mm}$

Absorption correction: multi-scan (SADABS2016; Krause et al., 2015) $T_{\rm min} = 0.438, T_{\rm max} = 0.495$ 115858 measured reflections 24622 independent reflections 18572 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$ $\theta_{\rm max} = 33.2^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$ $h = -25 \rightarrow 25$ $k = -15 \rightarrow 15$ $l = -28 \rightarrow 31$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0609P)^2 + 0.4737P]$ where $P = (F_0^2 + 2F_c^2)/3$ Absolute structure: Flack x determined using 7327 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et Absolute structure parameter: -0.0144 (14)

C1A	0.75797 (15)	0.1203 (3)	0.58725 (12)	0.0253 (4)
H1A	0.771592	0.149992	0.636934	0.030*
C2A	0.84239 (15)	0.0560(2)	0.58297 (13)	0.0239 (4)
C3A	0.91264 (15)	0.1580 (2)	0.58576 (14)	0.0262 (4)
H3AA	0.892408	0.215552	0.544294	0.031*
H3AB	0.923897	0.211845	0.628457	0.031*
C4A	0.99581 (16)	0.0896 (3)	0.58663 (15)	0.0314 (5)
H4AA	1.036546	0.089161	0.635301	0.038*
H4AB	0.982420	-0.001652	0.571907	0.038*
C5A	1.0918 (2)	0.2647 (3)	0.57295 (16)	0.0404 (7)
H5AA	1.115756	0.304971	0.539441	0.061*
H5AB	1.138756	0.235812	0.614397	0.061*
H5AC	1.056186	0.327915	0.587129	0.061*
C6A	1.0901 (2)	0.0563 (3)	0.5157 (2)	0.0441 (7)
H6AA	1.051580	-0.006000	0.483812	0.066*
H6AB	1.128727	0.010308	0.556399	0.066*
H6AC	1.124180	0.101322	0.491018	0.066*
C7A	0.87611 (15)	-0.0436 (3)	0.64224 (14)	0.0283 (5)
C8A	0.8828 (2)	-0.1710 (3)	0.62370 (17)	0.0364 (6)
H8A	0.864922	-0.192956	0.575279	0.044*
C9A	0.9150 (2)	-0.2694 (3)	0.6737 (2)	0.0479 (8)
H9A	0.918640	-0.355840	0.658637	0.058*
C10A	0.9408 (2)	-0.2416 (4)	0.7432 (2)	0.0483 (8)
H10A	0.961810	-0.308627	0.776728	0.058*
C11A	0.93654 (19)	-0.1126 (3)	0.76586 (16)	0.0407 (7)
C12A	0.9655 (2)	-0.0838 (5)	0.83857 (17)	0.0526 (9)
H12A	0.986902	-0.151708	0.871500	0.063*
C13A	0.9633 (3)	0.0384 (5)	0.86202 (19)	0.0597 (11)
H13A	0.983221	0.055843	0.911000	0.072*
C14A	0.9313 (2)	0.1395 (4)	0.81378 (16)	0.0479 (8)
H14A	0.929246	0.225084	0.830529	0.058*
C15A	0.90318 (19)	0.1164 (3)	0.74297 (15)	0.0357 (6)
H15A	0.882490	0.186537	0.711397	0.043*
C16A	0.90432 (16)	-0.0111 (3)	0.71559 (14)	0.0316 (5)
C17A	0.67859 (15)	0.0327 (3)	0.57224 (13)	0.0277 (5)
C18A	0.6128 (2)	0.0787 (4)	0.5946 (2)	0.0497 (8)
H18A	0.620591	0.157373	0.620373	0.060*
C19A	0.5355 (2)	0.0117 (4)	0.5799 (2)	0.0569 (10)
H19A	0.490525	0.046866	0.594292	0.068*
C20A	0.52354 (19)	-0.1032 (4)	0.54536 (18)	0.0475 (8)
H20A	0.470901	-0.149129	0.535924	0.057*
C21A	0.5879 (2)	-0.1517 (4)	0.52446 (18)	0.0487 (8)
H21A	0.580561	-0.232974	0.501099	0.058*
C22A	0.66510 (19)	-0.0831 (4)	0.53697 (17)	0.0461 (8)
H22A	0.708730	-0.117411	0.520735	0.055*
C23A	0.73471 (15)	0.2414 (2)	0.54251 (14)	0.0272 (5)
C24A	0.70146 (15)	0.2396 (2)	0.47090 (14)	0.0264 (5)
H24A	0.689599	0.159083	0.446837	0.032*

C25A	0.68451 (16)	0.3567 (3)	0.43217 (16)	0.0307 (5)
C26A	0.64932 (18)	0.3588 (3)	0.35808 (16)	0.0360 (6)
H26A	0.635255	0.280285	0.332208	0.043*
C27A	0.6359(2)	0.4759 (3)	0.32424 (19)	0.0442 (7)
C28A	0.6564 (2)	0.5939 (3)	0.3598 (2)	0.0473 (8)
H28A	0.648076	0.673357	0.334619	0.057*
C29A	0.68871 (19)	0.5927 (3)	0.4315 (2)	0.0455 (8)
H29A	0.702150	0.672378	0.456212	0.055*
C30A	0.70257 (16)	0.4748(3)	0.46960(17)	0.0348 (6)
C31A	0.74691 (17)	0.3681(3)	0.57451(17)	0.0361(6)
C32A	0.7682(3)	0.3001(5) 0.4825(5)	0.6821(2)	0.0501(0) 0.0641(12)
H32A	0.800334	0.551543	0.668372	0.0041(12)
1132A 1132B	0.702178	0.468430	0.732806	0.096*
H32D H32C	0.792178	0.408439	0.752890	0.090
C22A	0.707387	0.307049	0.009001	0.090°
C33A	0.87309(10)	0.1973(3)	0.38480(12) 0.21202(12)	0.0264(4)
C34A	0.82928 (10)	0.2472 (3)	0.31203 (13)	0.0267 (5)
H34A	0.779369	0.202920	0.283576	0.032*
C35A	0.85588 (16)	0.3491 (3)	0.28539 (13)	0.0269 (5)
H35A	0.907626	0.391592	0.311789	0.032*
C36A	0.80515 (16)	0.3986 (2)	0.21389 (13)	0.0280 (5)
Br1B	0.03711 (2)	0.42464 (3)	-0.28802 (2)	0.04720 (9)
O1B	0.33662 (11)	0.00508 (18)	0.02269 (9)	0.0267 (3)
H1B	0.327 (2)	0.060 (4)	-0.013 (2)	0.040*
O2B	0.27505 (14)	0.3816 (2)	0.13215 (11)	0.0392 (5)
O3B	0.57136 (13)	0.7488 (3)	0.07837 (11)	0.0460 (6)
O4B	0.68777 (12)	0.62216 (19)	0.10440 (9)	0.0294 (4)
O5B	0.64680 (14)	1.0698 (2)	0.27053 (14)	0.0453 (5)
O6B	0.75267 (14)	0.9246 (2)	0.31105 (10)	0.0398 (5)
H6B	0.771 (3)	0.989 (5)	0.339 (2)	0.060*
N1B	0.53663 (13)	0.1951 (2)	0.04729 (12)	0.0283 (4)
H1BN	0.502 (2)	0.191 (4)	0.006 (2)	0.034*
N2B	0.22630 (13)	0.4745 (2)	0.02299 (12)	0.0303 (4)
C1B	0.25543 (14)	0.1260 (2)	0.08575 (12)	0.0230 (4)
H1BA	0.264502	0.161026	0.133894	0.028*
C2B	0.34548 (14)	0.0737 (2)	0.08604 (12)	0.0229 (4)
C3B	0.40925 (15)	0.1858 (3)	0.08942 (14)	0.0267 (5)
H3BA	0.387922	0.239023	0.046308	0.032*
H3BB	0.413490	0.242027	0.130194	0.032*
C4B	0.49810 (15)	0.1312 (3)	0.09628 (14)	0.0294(5)
H4BA	0.536885	0.143220	0.145135	0.035*
H4BB	0 493009	0.036984	0.086459	0.035*
C5B	0 55983 (19)	0 3328 (3)	0.06465(17)	0.0405 (6)
H5BA	0.576770	0.372420	0.026984	0.061*
H5BR	0.607907	0.337836	0.108886	0.001
H5BC	0 510149	0 379233	0.069535	0.061*
C6B	0.61290 (18)	0.379233 0.1223(4)	0.04453 (18)	0.0426 (7)
H6RA	0 507246	0.031375	0 033735	0.0420(7)
H6RR	0.597240	0.127507	0.000215	0.004
	0.000720	0.14/37/	0.070415	0.004

H6BC	0.633488	0.159756	0.008298	0.064*
C7B	0.38230 (15)	-0.0216 (3)	0.14727 (13)	0.0262 (4)
C8B	0.39567 (17)	-0.1480 (3)	0.13133 (16)	0.0331 (5)
H8B	0.379285	-0.172851	0.083366	0.040*
C9B	0.4325 (2)	-0.2415 (3)	0.18302 (19)	0.0416 (7)
H9B	0.440569	-0.327656	0.169875	0.050*
C10B	0.4565 (2)	-0.2081 (3)	0.25186 (19)	0.0447 (8)
H10B	0.480564	-0.271730	0.286887	0.054*
C11B	0.44597 (19)	-0.0799 (4)	0.27190 (15)	0.0408 (6)
C12B	0.4749 (3)	-0.0458 (5)	0.34383 (18)	0.0598 (11)
H12B	0.499686	-0.110313	0.378138	0.072*
C13B	0.4677 (3)	0.0782 (6)	0.36478 (18)	0.0675 (12)
H13B	0.488485	0.100209	0.413208	0.081*
C14B	0.4294 (3)	0.1732 (4)	0.31411 (18)	0.0557 (9)
H14B	0.423864	0.259353	0.328671	0.067*
C15B	0.3998 (2)	0.1431 (3)	0.24405 (15)	0.0378 (6)
H15B	0.373284	0.208679	0.210960	0.045*
C16B	0.40786 (17)	0.0161 (3)	0.21970 (14)	0.0312 (5)
C17B	0.18258 (14)	0.0260 (2)	0.07173 (12)	0.0240 (4)
C18B	0.17658 (17)	-0.0904 (3)	0.03616 (16)	0.0362 (6)
H18B	0.222145	-0.116942	0.020048	0.043*
C19B	0.10414 (19)	-0.1690 (3)	0.02384 (17)	0.0403 (6)
H19B	0.101668	-0.249542	0.000471	0.048*
C20B	0.03663 (18)	-0.1320 (3)	0.04485 (16)	0.0375 (6)
H20B	-0.013176	-0.184875	0.035055	0.045*
C21B	0.0420(2)	-0.0165 (4)	0.0805 (2)	0.0458 (7)
H21B	-0.004282	0.010201	0.095651	0.055*
C22B	0.11428 (19)	0.0607 (3)	0.09440 (17)	0.0368 (6)
H22B	0.117436	0.138935	0.119927	0.044*
C23B	0.22633 (14)	0.2390 (2)	0.03590 (13)	0.0239 (4)
C24B	0.18545 (14)	0.2252 (2)	-0.03469 (12)	0.0231 (4)
H24B	0.170904	0.141171	-0.054186	0.028*
C25B	0.16467 (14)	0.3353 (2)	-0.07890 (13)	0.0245 (4)
C26B	0.12002 (16)	0.3252 (3)	-0.15184 (14)	0.0270 (5)
H26B	0.102173	0.243203	-0.173015	0.032*
C27B	0.10314 (16)	0.4359 (3)	-0.19113 (13)	0.0305 (5)
C28B	0.13093 (17)	0.5590 (3)	-0.16304 (16)	0.0325 (5)
H28B	0.120889	0.633205	-0.192502	0.039*
C29B	0.17314 (16)	0.5698 (3)	-0.09175 (16)	0.0321 (5)
H29B	0.191820	0.652478	-0.071822	0.039*
C30B	0.18881 (14)	0.4591 (2)	-0.04815 (14)	0.0270 (5)
C31B	0.24184 (15)	0.3705 (3)	0.06140 (14)	0.0284 (5)
C32B	0.2775 (3)	0.5082 (4)	0.1616 (2)	0.0605 (11)
H32D	0.312393	0.565497	0.143091	0.091*
H32E	0.302792	0.503171	0.212812	0.091*
H32F	0.218838	0.542620	0.149019	0.091*
C33B	0.64439 (16)	0.7125 (3)	0.11789 (12)	0.0275 (5)
C34B	0.68382 (16)	0.7862 (3)	0.18508 (12)	0.0262 (4)

H34B	0.740262	0.764391	0.214460	0.039 (9)*
C35B	0.64195 (16)	0.8809 (3)	0.20449 (13)	0.0270 (5)
H35B	0.583327	0.894093	0.177285	0.036 (9)*
C36B	0.67970 (16)	0.9671 (3)	0.26520 (14)	0.0294 (5)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1A	0.0876 (3)	0.0599 (2)	0.0575 (2)	0.0371 (2)	0.0360 (2)	0.02961 (19)
O1A	0.0325 (9)	0.0275 (9)	0.0287 (8)	-0.0026 (7)	0.0171 (7)	-0.0036 (7)
O2A	0.0461 (12)	0.0492 (14)	0.0444 (12)	0.0007 (10)	0.0073 (10)	-0.0244 (11)
O3A	0.0314 (9)	0.0409 (11)	0.0239 (8)	-0.0039 (8)	-0.0006 (7)	0.0011 (8)
O4A	0.0513 (12)	0.0284 (9)	0.0209 (8)	-0.0064 (8)	0.0065 (8)	-0.0016 (7)
O5A	0.0397 (10)	0.0264 (9)	0.0319 (9)	-0.0017 (8)	0.0024 (8)	0.0014 (7)
O6A	0.0427 (11)	0.0284 (9)	0.0300 (9)	0.0029 (8)	-0.0027 (8)	-0.0046 (7)
N1A	0.0175 (8)	0.0260 (9)	0.0287 (9)	-0.0018 (7)	0.0061 (7)	0.0007 (8)
N2A	0.0254 (10)	0.0290 (11)	0.0671 (17)	-0.0033 (9)	0.0154 (11)	-0.0140 (12)
C1A	0.0206 (10)	0.0325 (12)	0.0239 (10)	0.0019 (9)	0.0089 (8)	-0.0032 (9)
C2A	0.0199 (9)	0.0269 (11)	0.0270 (11)	0.0006 (8)	0.0104 (8)	-0.0003 (8)
C3A	0.0206 (10)	0.0269 (11)	0.0309 (11)	-0.0004 (8)	0.0082 (9)	0.0004 (9)
C4A	0.0233 (11)	0.0325 (13)	0.0417 (14)	0.0030 (9)	0.0150 (10)	0.0121 (11)
C5A	0.0407 (15)	0.0458 (17)	0.0348 (14)	-0.0224 (13)	0.0125 (12)	-0.0103 (12)
C6A	0.0382 (15)	0.0335 (14)	0.071 (2)	0.0077 (12)	0.0326 (15)	0.0071 (15)
C7A	0.0209 (10)	0.0325 (13)	0.0342 (12)	0.0000 (9)	0.0129 (9)	0.0030 (9)
C8A	0.0437 (15)	0.0316 (13)	0.0409 (15)	0.0007 (11)	0.0237 (12)	0.0043 (11)
C9A	0.060(2)	0.0337 (15)	0.060(2)	0.0086 (14)	0.0344 (17)	0.0150 (14)
C10A	0.0437 (17)	0.0495 (19)	0.056 (2)	0.0096 (14)	0.0227 (15)	0.0258 (16)
C11A	0.0295 (12)	0.0538 (19)	0.0378 (14)	-0.0025 (12)	0.0098 (11)	0.0151 (13)
C12A	0.0464 (17)	0.072 (2)	0.0335 (14)	-0.0056 (18)	0.0047 (13)	0.0172 (17)
C13A	0.054 (2)	0.087 (3)	0.0293 (15)	-0.015 (2)	0.0020 (14)	0.0067 (17)
C14A	0.0524 (18)	0.059 (2)	0.0281 (13)	-0.0158 (16)	0.0079 (13)	-0.0067 (13)
C15A	0.0344 (13)	0.0455 (16)	0.0257 (12)	-0.0101 (12)	0.0080 (10)	-0.0030 (11)
C16A	0.0227 (10)	0.0420 (14)	0.0291 (11)	-0.0035 (10)	0.0072 (9)	0.0052 (11)
C17A	0.0212 (10)	0.0394 (14)	0.0241 (10)	0.0016 (9)	0.0095 (8)	0.0059 (9)
C18A	0.0367 (15)	0.0452 (18)	0.082 (3)	0.0018 (13)	0.0390 (17)	-0.0005 (17)
C19A	0.0343 (15)	0.062 (2)	0.087 (3)	0.0035 (15)	0.0370 (18)	0.012 (2)
C20A	0.0255 (12)	0.066 (2)	0.0507 (17)	-0.0085 (13)	0.0119 (12)	0.0184 (16)
C21A	0.0395 (15)	0.068 (2)	0.0419 (16)	-0.0241 (16)	0.0185 (13)	-0.0132 (16)
C22A	0.0339 (13)	0.064 (2)	0.0487 (16)	-0.0199 (14)	0.0249 (12)	-0.0228 (16)
C23A	0.0212 (10)	0.0268 (11)	0.0352 (12)	0.0016 (9)	0.0116 (9)	-0.0069 (9)
C24A	0.0231 (10)	0.0244 (11)	0.0346 (12)	0.0041 (8)	0.0132 (9)	-0.0011 (9)
C25A	0.0225 (10)	0.0277 (12)	0.0462 (14)	0.0036 (9)	0.0171 (10)	0.0020 (11)
C26A	0.0356 (13)	0.0339 (14)	0.0445 (15)	0.0123 (11)	0.0211 (12)	0.0072 (12)
C27A	0.0404 (15)	0.0391 (15)	0.0610 (19)	0.0167 (13)	0.0274 (14)	0.0155 (15)
C28A	0.0340 (14)	0.0332 (15)	0.081 (3)	0.0102 (12)	0.0274 (16)	0.0152 (16)
C29A	0.0277 (13)	0.0251 (13)	0.087 (3)	0.0011 (10)	0.0228 (15)	0.0017 (15)
C30A	0.0206 (10)	0.0264 (11)	0.0600 (17)	0.0009 (9)	0.0167 (11)	-0.0022 (12)
C31A	0.0233 (11)	0.0355 (14)	0.0487 (16)	-0.0014 (10)	0.0108 (11)	-0.0159 (12)

C32A	0.064 (2)	0.060 (2)	0.073 (3)	-0.016 (2)	0.029 (2)	-0.044 (2)
C33A	0.0292 (11)	0.0269 (11)	0.0209 (10)	0.0030 (9)	0.0053 (8)	-0.0026 (8)
C34A	0.0243 (10)	0.0285 (11)	0.0234 (10)	0.0001 (9)	0.0025 (8)	-0.0008 (9)
C35A	0.0249 (10)	0.0270 (11)	0.0244 (10)	0.0002 (9)	0.0020 (8)	-0.0009 (9)
C36A	0.0286 (11)	0.0251 (12)	0.0275 (11)	0.0021 (9)	0.0057 (9)	-0.0014 (8)
Br1B	0.0713 (2)	0.03731 (15)	0.03003 (13)	0.00847 (15)	0.01267 (13)	0.00635 (12)
O1B	0.0293 (8)	0.0296 (9)	0.0256 (8)	0.0064 (7)	0.0151 (7)	0.0038 (7)
O2B	0.0409 (10)	0.0350 (10)	0.0348 (10)	0.0019 (8)	0.0031 (8)	-0.0121 (8)
O3B	0.0293 (10)	0.0694 (16)	0.0297 (10)	0.0111 (10)	-0.0034 (8)	-0.0150 (10)
O4B	0.0356 (9)	0.0289 (9)	0.0230 (8)	0.0020(7)	0.0084 (7)	-0.0004 (7)
O5B	0.0342 (10)	0.0326 (11)	0.0631 (14)	0.0041 (8)	0.0079 (10)	-0.0164 (10)
O6B	0.0472 (11)	0.0280 (9)	0.0306 (9)	0.0058 (9)	-0.0054 (8)	-0.0075 (9)
N1B	0.0164 (8)	0.0402 (12)	0.0255 (9)	-0.0009 (8)	0.0031 (7)	0.0079 (9)
N2B	0.0229 (9)	0.0247 (9)	0.0402 (12)	-0.0008(8)	0.0063 (8)	-0.0054 (9)
C1B	0.0193 (9)	0.0272 (11)	0.0233 (10)	0.0022 (8)	0.0083 (8)	0.0006 (8)
C2B	0.0193 (9)	0.0284 (11)	0.0221 (10)	0.0043 (8)	0.0081 (8)	0.0057 (8)
C3B	0.0196 (10)	0.0290 (12)	0.0322 (11)	0.0016 (8)	0.0095 (9)	0.0081 (9)
C4B	0.0201 (10)	0.0364 (13)	0.0319 (12)	0.0031 (9)	0.0089 (9)	0.0121 (10)
C5B	0.0310 (13)	0.0404 (15)	0.0454 (16)	-0.0101(11)	0.0064 (12)	0.0031 (13)
C6B	0.0250 (12)	0.059 (2)	0.0458 (16)	0.0085 (12)	0.0149 (11)	0.0128 (15)
C7B	0.0194 (9)	0.0311 (12)	0.0288 (11)	0.0012 (9)	0.0088 (8)	0.0057 (10)
C8B	0.0300 (12)	0.0300 (13)	0.0422 (14)	0.0041 (10)	0.0160 (11)	0.0092 (11)
C9B	0.0358 (14)	0.0357 (15)	0.0560 (18)	0.0083 (12)	0.0188 (13)	0.0171 (13)
C10B	0.0351 (14)	0.0460 (18)	0.0516 (18)	0.0116 (13)	0.0121 (13)	0.0282 (15)
C11B	0.0343 (13)	0.0529 (17)	0.0312 (12)	-0.0013(13)	0.0055 (10)	0.0153 (14)
C12B	0.060 (2)	0.078 (3)	0.0307 (14)	0.004 (2)	0.0002 (14)	0.0205 (17)
C13B	0.077(3)	0.088 (3)	0.0234 (14)	-0.006(2)	-0.0024(16)	0.0039 (17)
C14B	0.067 (2)	0.059 (2)	0.0308 (15)	-0.0105 (18)	0.0022 (15)	-0.0046 (15)
C15B	0.0381 (14)	0.0442 (16)	0.0267 (12)	-0.0045 (12)	0.0047 (11)	0.0014 (11)
C16B	0.0236 (11)	0.0400 (14)	0.0275 (11)	-0.0009(10)	0.0052 (9)	0.0083 (10)
C17B	0.0207 (10)	0.0295 (11)	0.0225 (10)	0.0029 (8)	0.0081 (8)	0.0042 (8)
C18B	0.0282 (11)	0.0403 (15)	0.0452 (14)	-0.0070(11)	0.0189 (11)	-0.0112(12)
C19B	0.0354 (14)	0.0434 (16)	0.0445 (16)	-0.0130(12)	0.0163 (12)	-0.0110(13)
C20B	0.0278 (12)	0.0474 (17)	0.0382 (14)	-0.0103 (11)	0.0120 (11)	0.0046 (13)
C21B	0.0317 (13)	0.0533 (19)	0.063 (2)	-0.0026 (13)	0.0302 (14)	0.0012 (17)
C22B	0.0330 (13)	0.0365 (14)	0.0499 (16)	-0.0005 (11)	0.0259 (12)	-0.0019 (12)
C23B	0.0187 (9)	0.0231 (10)	0.0309 (11)	0.0022 (8)	0.0093 (8)	-0.0017 (8)
C24B	0.0193 (9)	0.0220 (10)	0.0277 (10)	0.0029 (8)	0.0074 (8)	-0.0002(8)
C25B	0.0188 (9)	0.0242 (11)	0.0309 (11)	0.0030 (8)	0.0088 (8)	0.0014 (9)
C26B	0.0273 (11)	0.0247 (11)	0.0313 (12)	0.0028 (9)	0.0127 (9)	0.0021 (9)
C27B	0.0309 (11)	0.0313 (13)	0.0317 (11)	0.0055 (10)	0.0136 (9)	0.0061 (10)
C28B	0.0293 (12)	0.0269 (12)	0.0454 (15)	0.0029 (10)	0.0180 (11)	0.0089 (11)
C29B	0.0233 (11)	0.0232 (11)	0.0519 (16)	-0.0007(9)	0.0151 (11)	0.0020 (11)
C30B	0.0177 (9)	0.0224 (11)	0.0410 (13)	0.0008 (8)	0.0096 (9)	0.0008 (9)
C31B	0.0203 (10)	0.0284 (12)	0.0345 (12)	0.0007 (9)	0.0063 (9)	-0.0061 (10)
C32B	0.072 (3)	0.044 (2)	0.051 (2)	-0.0037 (17)	0.0006 (18)	-0.0245(16)
C33B	0.0273 (11)	0.0343 (13)	0.0196 (10)	0.0008 (9)	0.0059 (8)	-0.0007(9)
C34B	0.0241 (10)	0.0299 (12)	0.0223 (10)	0.0010 (9)	0.0043 (8)	-0.0013(9)
	()	· · · 、/	()			·····

C35B	0.0242 (10)	0.0263 (11)	0.0277 (11)	0.0007 (9)	0.0048 (9)	0.0004 (9)
C36B	0.0295 (11)	0.0245 (11)	0.0330 (12)	0.0004 (9)	0.0085 (9)	-0.0015 (9)

Geometric parameters (Å, °)

Br1A—C27A	1.891 (4)	Br1B—C27B	1.902 (3)
O1A—C2A	1.425 (3)	O1B—C2B	1.425 (3)
O1A—H1AB	0.86 (4)	O1B—H1B	0.89 (4)
O2A—C31A	1.363 (4)	O2B—C31B	1.354 (3)
O2A—C32A	1.434 (4)	O2B—C32B	1.430 (4)
O3A—C33A	1.258 (3)	O3B—C33B	1.261 (3)
O4A—C33A	1.263 (3)	O4B—C33B	1.257 (3)
O5A—C36A	1.323 (3)	O5B—C36B	1.211 (3)
O5A—H5A	1.04 (4)	O6B—C36B	1.326 (3)
O6A—C36A	1.206 (3)	O6B—H6B	0.86 (5)
N1A—C5A	1.478 (3)	N1B—C6B	1.479 (4)
N1A—C6A	1.485 (4)	N1B—C5B	1.484 (4)
N1A—C4A	1.498 (3)	N1B—C4B	1.491 (3)
N1A—H1AN	0.98 (4)	N1B—H1BN	0.85 (4)
N2A—C31A	1.296 (4)	N2B—C31B	1.299 (4)
N2A—C30A	1.371 (4)	N2B—C30B	1.372 (4)
C1A—C23A	1.514 (4)	C1B—C23B	1.511 (3)
C1A—C17A	1.535 (3)	C1B—C17B	1.536 (3)
C1A—C2A	1.568 (3)	C1B—C2B	1.576 (3)
C1A—H1A	1.0000	C1B—H1BA	1.0000
C2A—C7A	1.535 (4)	C2B—C7B	1.539 (3)
C2A—C3A	1.551 (3)	C2B—C3B	1.548 (3)
C3A—C4A	1.535 (3)	C3B—C4B	1.530 (3)
СЗА—НЗАА	0.9900	C3B—H3BA	0.9900
СЗА—НЗАВ	0.9900	C3B—H3BB	0.9900
С4А—Н4АА	0.9900	C4B—H4BA	0.9900
C4A—H4AB	0.9900	C4B—H4BB	0.9900
С5А—Н5АА	0.9800	C5B—H5BA	0.9800
C5A—H5AB	0.9800	C5B—H5BB	0.9800
C5A—H5AC	0.9800	C5B—H5BC	0.9800
С6А—Н6АА	0.9800	C6B—H6BA	0.9800
C6A—H6AB	0.9800	C6B—H6BB	0.9800
С6А—Н6АС	0.9800	C6B—H6BC	0.9800
C7A—C8A	1.381 (4)	C7B—C8B	1.378 (4)
C7A—C16A	1.437 (4)	C7B—C16B	1.434 (4)
C8A—C9A	1.406 (4)	C8B—C9B	1.403 (4)
C8A—H8A	0.9500	C8B—H8B	0.9500
C9A-C10A	1.355 (6)	C9B—C10B	1.357 (5)
С9А—Н9А	0.9500	C9B—H9B	0.9500
C10A—C11A	1.417 (6)	C10B—C11B	1.411 (6)
C10A—H10A	0.9500	C10B—H10B	0.9500
C11A—C12A	1.416 (5)	C11B—C12B	1.414 (5)
C11A—C16A	1.432 (4)	C11B—C16B	1.432 (4)

C12A—C13A	1.351 (7)	C12B—C13B	1.365 (7)
C12A—H12A	0.9500	C12B—H12B	0.9500
C13A - C14A	1 406 (6)	C13B— $C14B$	1 407 (6)
C13A - H13A	0.9500	C13B—H13B	0.9500
C14A - C15A	1 369 (4)	C14B $C15B$	1.370(4)
	0.9500	C14B H14B	0.0500
C15A $C16A$	1 430 (5)	C15B C16B	1.421(A)
$C_{15A} = C_{16A}$	0.0500	$C_{15D} = C_{16D}$	0.0500
C17A = C17A	0.9300	C17D - C18D	0.9300 1 297 (4)
C17A = C12A	1.371(4) 1.287(4)	C17D = C18D	1.307(4) 1.202(2)
C1/A— $C18A$	1.387 (4)	CI/B—C22B	1.392 (3)
C18A—C19A	1.391 (5)	CI8B—CI9B	1.395 (4)
CI8A—HI8A	0.9500	CI8B—HI8B	0.9500
C19A—C20A	1.357 (6)	C19B—C20B	1.367 (4)
СТ9А—НТ9А	0.9500	CI9B—HI9B	0.9500
C20A—C21A	1.357 (5)	C20B—C21B	1.380 (5)
C20A—H20A	0.9500	C20B—H20B	0.9500
C21A—C22A	1.403 (4)	C21B—C22B	1.381 (4)
C21A—H21A	0.9500	C21B—H21B	0.9500
C22A—H22A	0.9500	C22B—H22B	0.9500
C23A—C24A	1.366 (4)	C23B—C24B	1.367 (3)
C23A—C31A	1.443 (4)	C23B—C31B	1.444 (3)
C24A—C25A	1.415 (4)	C24B—C25B	1.415 (3)
C24A—H24A	0.9500	C24B—H24B	0.9500
C25A—C30A	1.413 (4)	C25B—C26B	1.415 (4)
C25A—C26A	1.414 (4)	C25B—C30B	1.419 (4)
C26A—C27A	1.370 (4)	C26B—C27B	1.366 (4)
C26A—H26A	0.9500	C26B—H26B	0.9500
C27A—C28A	1.397 (5)	C27B—C28B	1.404 (4)
C28A—C29A	1.366 (6)	C28B—C29B	1.380 (4)
C28A—H28A	0.9500	C28B—H28B	0.9500
C29A—C30A	1.417 (5)	C29B—C30B	1.413 (4)
С29А—Н29А	0.9500	C29B—H29B	0.9500
C32A—H32A	0.9800	C32B—H32D	0.9800
C32A—H32B	0.9800	C32B—H32E	0.9800
$C_{32}A - H_{32}C$	0.9800	C32B—H32F	0.9800
$C_{33}A - C_{34}A$	1 498 (3)	C_{33B} C_{34B}	1.502(3)
$C_{34} = C_{35}$	1.490(3) 1.320(4)	C_{34B} C_{35B} C_{34B}	1.302(3) 1.327(4)
C_{34A} H_{34A}	0.9500	C34B H34B	0.0500
C_{35A} C_{36A}	1 /08 (3)	C35B C36B	1.75(4)
$C_{25A} = C_{25A}$	0.0500	C25D H25D	0.0500
C35A—H35A	0.9300	Сээв—нээв	0.9300
C2A—O1A—H1AB	112 (3)	C2B-01B-H1B	111 (3)
$C_{31} = C_{32}$	117 6 (3)	$C_{31B} = O_{2B} = C_{32B}$	1174(3)
$C_{364} = 0_{24} = 0_{324}$	107 (3)	$C_{36B} = O_{2B} = C_{32B}$	105(3)
$C_{50} = 0_{50} = 0_{50}$	107(3) 1107(2)		100(3)
C_{A} NIA C_{A}	110.7(2) 112.5(2)	C(D = N1D = CJD	109.0(2)
C_{A} NIA C_{A}	112.3(2) 110.8(2)	$C_{4}D = C_{4}D$	110.0(2) 112.6(2)
C_{A} NIA ULAN	110.8(2)	CD NID UDN	113.0(2)
UJA—NIA—HIAN	110(2)	COB-NIB-HIBN	104 (3)

C6A—N1A—H1AN	104 (2)	C5B—N1B—H1BN	109 (3)
C4A—N1A—H1AN	108 (2)	C4B—N1B—H1BN	109 (3)
C31A—N2A—C30A	117.5 (3)	C31B—N2B—C30B	117.4 (2)
C23A—C1A—C17A	109.67 (19)	C23B—C1B—C17B	109.78 (18)
C23A—C1A—C2A	111.83 (19)	C23B—C1B—C2B	111.04 (18)
C17A—C1A—C2A	116.8 (2)	C17B—C1B—C2B	116.5 (2)
C23A—C1A—H1A	105.9	C23B—C1B—H1BA	106.3
C17A—C1A—H1A	105.9	C17B—C1B—H1BA	106.3
C2A—C1A—H1A	105.9	C2B—C1B—H1BA	106.3
01A—C2A—C7A	107.7 (2)	O1B—C2B—C7B	107.4 (2)
O1A - C2A - C3A	106.58 (19)	O1B-C2B-C3B	106.19 (18)
C7A - C2A - C3A	110.6 (2)	C7B-C2B-C3B	111.09 (19)
O1A - C2A - C1A	109.90(19)	O1B-C2B-C1B	110.36 (18)
C7A - C2A - C1A	109.93(19)	C7B - C2B - C1B	110.30(10) 110.11(18)
C_{3A} C_{2A} C_{1A}	1120(2)	C_{3B} C_{2B} C_{1B}	110.11(10) 1115(2)
C4A - C3A - C2A	109.8(2)	C4B - C3B - C2B	110.0(2)
C4A - C3A - H3AA	109.8 (2)	C4B = C3B = H3BA	109.7
C_{1}^{2}	109.7	$C^{2}B$ $C^{3}B$ $H^{3}BA$	109.7
C_{A} C_{A} C_{A} H_{A} H_{A}	109.7	C4B C3B H3BB	109.7
$C_{A} C_{A} H_{A} B$	109.7	C2B C3B H3BB	109.7
$H_{3} \land -C_{3} \land -H_{3} \land B$	109.7	$H_{3BA} = C_{3B} = H_{3BB}$	109.7
N1A CAA C3A	100.2	NIB CAB C3B	100.2 112 3 (2)
N1A - C4A - H4AA	108.9	N1B - C4B - H4BA	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.9	$C_{2}^{2} P C_{4}^{2} P H_{4}^{2} P A$	109.2
	108.9	NIB CAB HABB	109.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.9	$\begin{array}{cccc} \mathbf{N}\mathbf{I}\mathbf{D} & -\mathbf{C}4\mathbf{D} & -\mathbf{I}14\mathbf{D}\mathbf{D} \\ \mathbf{C}2\mathbf{P} & \mathbf{C}4\mathbf{P} & \mathbf{H}4\mathbf{P}\mathbf{P} \end{array}$	109.2
	108.9		107.0
$\mathbf{M} \mathbf{A} = \mathbf{C} \mathbf{A} \mathbf{A} = \mathbf{M} \mathbf{A} \mathbf{A}$	107.7	$\mathbf{M} = \mathbf{M} = $	107.9
NIA C5A H5AD	109.5	NID C5D U5DD	109.5
$\mathbf{N}\mathbf{I}\mathbf{A} = \mathbf{C}\mathbf{S}\mathbf{A} = \mathbf{\Pi}\mathbf{S}\mathbf{A}\mathbf{D}$	109.5	NID-CJD-IJDD	109.5
N1A C5A H5AC	109.5	NID C5D U5DC	109.5
	109.5	H5DA C5D H5DC	109.5
HSAR CSA HSAC	109.5	H5PR C5P H5PC	109.5
N1A C6A H6AA	109.5	NID COD HODA	109.5
N1A = C6A = H6AR	109.5	NID-COD-HODA	109.5
	109.5		109.5
N1A C6A H6AC	109.5	NID COD HODD	109.5
	109.5	HEDA CED HEDC	109.5
H6AP C6A H6AC	109.5	HARR CAR HARC	109.5
C_{2}^{2}	107.3 119.2 (2)	$\begin{array}{c} \text{IIOBB} \\ \hline \\ \text{C9P} \\ \hline \\ \text{C7P} \\ \hline \\ \text{C16P} \\ \hline \end{array}$	109.3
$C_{A} C_{A} C_{A} C_{A}$	110.2(3)	C_{0}^{0} C_{1}^{0} C_{1	116.0(2)
$C_{0A} - C_{A} - C_{2A}$	117.0(2) 122.0(2)	$C_{0}D - C_{1}D - C_{2}D$	117.9(2) 122.3(2)
CTA = CPA = CQA	123.9(2)	C10B - C/B - C2B	123.3(2)
$C/A = C \delta A = C \theta A$	122.0 (5)	$C/D = C\delta D = C9 D$	122.7 (3)
$C_{A} = C_{A} = H_{A}$	110./	$C / D - C O D - \Pi O D$	110.0
$C_{A} = C_{A} = C_{A}$	110.7	$C_{2}D - C_{0}D - T_{0}D$	110.0 110.7(2)
$C_{10A} = C_{9A} = C_{0A}$	120.5 (5)	$C_{10D} = C_{2D} = C_{0D}$	117.7 (5)
CIUA - CYA - HYA	119.9		120.2
сба—суа—нуа	119.9	Сов—Сав—Нав	120.2

C9A—C10A—C11A	120.1 (3)	C9B—C10B—C11B	120.6 (3)
C9A—C10A—H10A	120.0	C9B—C10B—H10B	119.7
C11A—C10A—H10A	120.0	C11B—C10B—H10B	119.7
C12A—C11A—C10A	119.7 (3)	C10B—C11B—C12B	119.7 (3)
C12A—C11A—C16A	120.0 (3)	C10B—C11B—C16B	120.3 (3)
C10A—C11A—C16A	120.3 (3)	C12B—C11B—C16B	120.0 (4)
C13A—C12A—C11A	121.3 (3)	C13B—C12B—C11B	121.1 (3)
C13A—C12A—H12A	119.4	C13B—C12B—H12B	119.5
C11A—C12A—H12A	119.4	C11B—C12B—H12B	119.5
C12A—C13A—C14A	119.8 (3)	C12B—C13B—C14B	119.5 (3)
C12A—C13A—H13A	120.1	C12B—C13B—H13B	120.3
C14A—C13A—H13A	120.1	C14B—C13B—H13B	120.3
C15A—C14A—C13A	120.9 (4)	C15B—C14B—C13B	120.9 (4)
C15A—C14A—H14A	119.6	C15B—C14B—H14B	119.6
C13A—C14A—H14A	119.6	C13B— $C14B$ — $H14B$	119.6
C14A— $C15A$ — $C16A$	121.3 (3)	C14B-C15B-C16B	121.6 (3)
C14A - C15A - H15A	119 3	C14B— $C15B$ — $H15B$	119.2
C16A - C15A - H15A	119.3	C16B— $C15B$ — $H15B$	119.2
C15A - C16A - C11A	116.6 (3)	C15B— $C16B$ — $C11B$	119.2 116.9 (3)
$C_{15A} = C_{16A} = C_{7A}$	124.8 (3)	C15B $C16B$ $C7B$	1250(2)
$C_{11A} = C_{16A} = C_{7A}$	112 + .0 (3)	C11B - C16B - C7B	123.0(2) 118 1 (3)
$C^{22} = C^{17} = C^{18}$	117.2(3)	C18B - C17B - C22B	117.7(2)
$C_{22A} = C_{17A} = C_{16A}$	117.2(3) 126.7(2)	C18B - C17B - C22B	117.7(2) 126.6(2)
C_{22} C_{17} C_{17} C_{17}	120.7(2) 116.0(3)	C_{10} C_{17} C_{17} C_{18} C_{18}	120.0(2) 115.6(2)
C17A = C17A = C17A	110.0(3) 121.2(4)	$C_{22}D = C_{17}D = C_{10}D$	113.0(2) 120.5(3)
C17A = C18A = C19A	121.2 (4)	C17D - C18D - C19D	120.5 (5)
$C_{10A} = C_{10A} = H_{10A}$	119.4	$C_{10}^{10} = C_{10}^{10} = H_{10}^{10} = $	119.0
C19A - C18A - H18A	119.4	$C_{19} = C_{10} = C_{19} = C$	119.0 121.1(2)
$C_{20A} = C_{10A} = U_{10A}$	120.7 (5)	$C_{20}D = C_{10}D = U_{10}D$	121.1(3)
C_{20A} C_{10A} H_{10A}	119.0	$C_{20} = C_{19} = C$	119.4
$C_{10A} = C_{10A} = C_{10A}$	119.0	C10D C20D C21D	119.4
$C_{21A} = C_{20A} = C_{19A}$	119.1 (3)	C19B - C20B - C21B	118.9 (3)
$C_{21}A - C_{20}A - H_{20}A$	120.5	C19B - C20B - H20B	120.6
C19A - C20A - H20A	120.5	C_{21B} C_{20B} H_{20B}	120.6
$C_{20}A = C_{21}A = C_{22}A$	120.7 (4)	$C_{20}B = C_{21}B = C_{22}B$	120.5 (3)
$C_{20}A = C_{21}A = H_{21}A$	119.6	C20B—C21B—H21B	119.8
$C_{22}A = C_{21}A = H_{21}A$	119.6	$C_{22}B - C_{21}B - H_{21}B$	119.8
C17A - C22A - C21A	121.1 (3)	$C_{21B} = C_{22B} = C_{17B}$	121.3 (3)
C17A—C22A—H22A	119.5	C21B—C22B—H22B	119.3
C21A—C22A—H22A	119.5	C17B—C22B—H22B	119.3
C24A—C23A—C31A	115.7 (3)	C24B—C23B—C31B	115.9 (2)
C24A—C23A—C1A	123.6 (2)	C24B—C23B—C1B	123.5 (2)
C31A—C23A—C1A	120.7 (2)	C31B—C23B—C1B	120.5 (2)
C23A—C24A—C25A	120.7 (2)	C23B—C24B—C25B	120.4 (2)
C23A—C24A—H24A	119.7	C23B—C24B—H24B	119.8
C25A—C24A—H24A	119.7	C25B—C24B—H24B	119.8
C30A—C25A—C26A	119.5 (3)	C24B—C25B—C26B	122.1 (2)
C30A—C25A—C24A	118.2 (3)	C24B—C25B—C30B	118.2 (2)
C26A—C25A—C24A	122.3 (3)	C26B—C25B—C30B	119.7 (2)

C27A—C26A—C25A	118.9 (3)	C27B—C26B—C25B	118.6 (2)
C27A—C26A—H26A	120.6	C27B—C26B—H26B	120.7
C25A—C26A—H26A	120.6	C25B—C26B—H26B	120.7
C26A—C27A—C28A	122.8 (3)	C26B—C27B—C28B	123.1 (2)
C26A—C27A—Br1A	119.0 (3)	C26B—C27B—Br1B	118.9 (2)
C28A—C27A—Br1A	118.2 (3)	C28B—C27B—Br1B	118.0 (2)
C29A—C28A—C27A	118.6 (3)	C29B—C28B—C27B	118.6 (2)
C29A—C28A—H28A	120.7	C29B—C28B—H28B	120.7
C27A—C28A—H28A	120.7	C27B—C28B—H28B	120.7
C28A—C29A—C30A	121.3 (3)	C28B—C29B—C30B	120.6 (3)
С28А—С29А—Н29А	119.4	C28B—C29B—H29B	119.7
C30A—C29A—H29A	119.4	C30B—C29B—H29B	119.7
N2A—C30A—C25A	121.7 (3)	N2B-C30B-C29B	119.0 (2)
N2A—C30A—C29A	119.4 (3)	N2B-C30B-C25B	121.8 (2)
C25A—C30A—C29A	118.9 (3)	C29B—C30B—C25B	119.3 (2)
N2A—C31A—O2A	120.2 (3)	N2B—C31B—O2B	119.4 (2)
N2A—C31A—C23A	126.1 (3)	N2B—C31B—C23B	126.0 (2)
O2A—C31A—C23A	113.7 (3)	O2B—C31B—C23B	114.7 (2)
O2A—C32A—H32A	109.5	O2B—C32B—H32D	109.5
O2A—C32A—H32B	109.5	O2B—C32B—H32E	109.5
H32A—C32A—H32B	109.5	H32D—C32B—H32E	109.5
O2A—C32A—H32C	109.5	O2B—C32B—H32F	109.5
H32A—C32A—H32C	109.5	H32D—C32B—H32F	109.5
H32B—C32A—H32C	109.5	H32E—C32B—H32F	109.5
O3A—C33A—O4A	124.3 (2)	O4B—C33B—O3B	125.1 (2)
O3A—C33A—C34A	118.4 (2)	O4B—C33B—C34B	117.6 (2)
O4A—C33A—C34A	117.4 (2)	O3B—C33B—C34B	117.3 (2)
C35A—C34A—C33A	123.4 (2)	C35B—C34B—C33B	121.8 (2)
C35A—C34A—H34A	118.3	C35B—C34B—H34B	119.1
C33A—C34A—H34A	118.3	C33B—C34B—H34B	119.1
C34A—C35A—C36A	120.6 (2)	C34B—C35B—C36B	124.8 (2)
C34A—C35A—H35A	119.7	C34B—C35B—H35B	117.6
C36A—C35A—H35A	119.7	C36B—C35B—H35B	117.6
O6A—C36A—O5A	124.6 (2)	O5B—C36B—O6B	123.8 (3)
O6A—C36A—C35A	123.3 (2)	O5B—C36B—C35B	121.5 (2)
O5A—C36A—C35A	112.1 (2)	O6B—C36B—C35B	114.6 (2)
C23A—C1A—C2A—O1A	-76.0 (3)	C23B—C1B—C2B—O1B	-73.1 (2)
C17A—C1A—C2A—O1A	51.5 (3)	C17B—C1B—C2B—O1B	53.6 (3)
C23A—C1A—C2A—C7A	165.5 (2)	C23B—C1B—C2B—C7B	168.5 (2)
C17A—C1A—C2A—C7A	-67.0 (3)	C17B—C1B—C2B—C7B	-64.8 (3)
C23A—C1A—C2A—C3A	42.2 (3)	C23B—C1B—C2B—C3B	44.7 (3)
C17A—C1A—C2A—C3A	169.7 (2)	C17B—C1B—C2B—C3B	171.38 (19)
O1A—C2A—C3A—C4A	-63.8 (3)	O1B—C2B—C3B—C4B	-64.8 (2)
C7A—C2A—C3A—C4A	53.1 (3)	C7B—C2B—C3B—C4B	51.7 (3)
C1A—C2A—C3A—C4A	176.0 (2)	C1B—C2B—C3B—C4B	174.92 (19)
C5A—N1A—C4A—C3A	82.3 (3)	C6B—N1B—C4B—C3B	-168.1 (2)
C6A—N1A—C4A—C3A	-153.2 (2)	C5B—N1B—C4B—C3B	67.9 (3)

C2A—C3A—C4A—N1A	137.2 (2)	C2B—C3B—C4B—N1B	133.7 (2)
O1A—C2A—C7A—C8A	-0.2 (3)	O1B—C2B—C7B—C8B	-2.6 (3)
C3A—C2A—C7A—C8A	-116.3 (3)	C3B—C2B—C7B—C8B	-118.3 (2)
C1A—C2A—C7A—C8A	119.5 (2)	C1B—C2B—C7B—C8B	117.6 (2)
O1A—C2A—C7A—C16A	177.1 (2)	O1B-C2B-C7B-C16B	173.7 (2)
C3A—C2A—C7A—C16A	61.0 (3)	C3B—C2B—C7B—C16B	58.0 (3)
C1A—C2A—C7A—C16A	-63.1 (3)	C1B—C2B—C7B—C16B	-66.1(3)
C16A—C7A—C8A—C9A	0.8 (4)	C16B—C7B—C8B—C9B	0.6 (4)
C2A—C7A—C8A—C9A	178.3 (3)	C2B—C7B—C8B—C9B	177.1 (2)
C7A—C8A—C9A—C10A	0.2 (5)	C7B—C8B—C9B—C10B	-0.1(4)
C8A - C9A - C10A - C11A	-0.8(5)	C8B - C9B - C10B - C11B	-1.0(5)
C9A - C10A - C11A - C12A	-1786(3)	C9B-C10B-C11B-C12B	-1772(3)
C9A - C10A - C11A - C16A	0.5(5)	C9B— $C10B$ — $C11B$ — $C16B$	15(5)
$C_{10}A - C_{11}A - C_{12}A - C_{13}A$	179.2(4)	C10B-C11B-C12B-C13B	1.5(3) 178 2 (4)
$C_{16A} = C_{11A} = C_{12A} = C_{13A}$	179.2(4)	C16B $C11B$ $C12B$ $C13B$	-0.5(6)
$C_{11A} = C_{12A} = C_{12A} = C_{13A}$	0.2(5)	$C_{11}^{11}B = C_{12}^{12}B = C_{13}^{12}B = C_{14}^{14}B$	1.3(0)
C12A $C12A$ $C14A$ $C15A$	-0.7(6)	C12P $C12D$ $C13D$ $C14D$ $C15P$	1.3(7)
C12A = C13A = C14A = C15A	-0.7(0)	C12B - C13B - C14B - C15B	-0.0(7)
C13A - C14A - C15A - C16A	0.7(5)	C13B - C14B - C15B - C16B	-1.0(6)
C14A - C15A - C16A - C11A	-0.2(4)	C14B - C15B - C16B - C11B	1.8 (5)
C14A - C15A - C16A - C/A	-1/9.9(3)	C14B - C15B - C16B - C7B	-1/6.9(3)
CI2A—CIIA—CI6A—CI5A	-0.2(4)	CI0B—CIIB—CI6B—CI5B	-1/9.8 (3)
CIOA—CIIA—CI6A—CI5A	-179.3(3)	CI2B—CIIB—CI6B—CI5B	-1.1 (4)
C12A—C11A—C16A—C/A	179.5 (3)	C10B—C11B—C16B—C/B	-0.9 (4)
C10A—C11A—C16A—C7A	0.4 (4)	C12B—C11B—C16B—C7B	177.8 (3)
C8A—C7A—C16A—C15A	178.6 (3)	C8B—C7B—C16B—C15B	178.6 (3)
C2A—C7A—C16A—C15A	1.3 (4)	C2B—C7B—C16B—C15B	2.4 (4)
C8A—C7A—C16A—C11A	-1.1 (4)	C8B—C7B—C16B—C11B	-0.1 (4)
C2A—C7A—C16A—C11A	-178.4 (2)	C2B—C7B—C16B—C11B	-176.4 (2)
C23A—C1A—C17A—C22A	108.7 (3)	C23B—C1B—C17B—C18B	103.0 (3)
C2A—C1A—C17A—C22A	-19.8 (4)	C2B—C1B—C17B—C18B	-24.3 (3)
C23A—C1A—C17A—C18A	-68.6 (3)	C23B—C1B—C17B—C22B	-73.6 (3)
C2A-C1A-C17A-C18A	162.8 (3)	C2B—C1B—C17B—C22B	159.1 (2)
C22A—C17A—C18A—C19A	-1.8 (5)	C22B—C17B—C18B—C19B	0.1 (4)
C1A—C17A—C18A—C19A	175.8 (3)	C1B-C17B-C18B-C19B	-176.4 (3)
C17A—C18A—C19A—C20A	2.3 (6)	C17B—C18B—C19B—C20B	1.6 (5)
C18A—C19A—C20A—C21A	-0.7 (6)	C18B—C19B—C20B—C21B	-1.8(5)
C19A—C20A—C21A—C22A	-1.3 (6)	C19B—C20B—C21B—C22B	0.3 (5)
C18A—C17A—C22A—C21A	-0.2 (5)	C20B-C21B-C22B-C17B	1.4 (5)
C1A—C17A—C22A—C21A	-177.6 (3)	C18B—C17B—C22B—C21B	-1.6(4)
C20A—C21A—C22A—C17A	1.8 (6)	C1B—C17B—C22B—C21B	175.3 (3)
C17A—C1A—C23A—C24A	-57.4 (3)	C17B—C1B—C23B—C24B	-46.9(3)
C_2A — C_1A — C_23A — C_24A	73.8 (3)	C2B— $C1B$ — $C23B$ — $C24B$	83.4 (3)
C17A - C1A - C23A - C31A	122.5 (2)	C17B—C1B—C23B—C31B	133.8 (2)
C2A-C1A-C23A-C31A	-106.3(3)	C2B— $C1B$ — $C23B$ — $C31B$	-95.9(3)
$C_{31A} = C_{23A} = C_{24A} = C_{25A}$	27(3)	$C_{31B} C_{23B} C_{24B} C_{25B}$	3 2 (3)
C1A - C23A - C24A - C25A	-1773(2)	C1B-C23B-C24B-C25B	-1761(2)
$C_{23A} C_{24A} C_{25A} C_{30A}$	-0.3(3)	$C^{23B} = C^{24B} = C^{25B} = C^{26B}$	-1780(2)
$C_{23A} = C_{24A} = C_{25A} = C_{26A}$	-1793(2)	$C_{23B} = C_{24B} = C_{25B} = C_{20B}$	1, 0.0(2) 1, 2(3)
$023\Pi - 02\pi\Pi - 023\Pi - 020\Pi$	117.3 (4)	$\Box_{2}D \Box_{2}D $	1.4 (3)

C30A—C25A—C26A—C27A	1.8 (4)	C24B—C25B—C26B—C27B	-179.3 (2)
C24A—C25A—C26A—C27A	-179.1 (3)	C30B—C25B—C26B—C27B	1.6 (3)
C25A—C26A—C27A—C28A	0.8 (4)	C25B—C26B—C27B—C28B	2.5 (4)
C25A—C26A—C27A—Br1A	-178.82 (19)	C25B—C26B—C27B—Br1B	-176.19 (17)
C26A—C27A—C28A—C29A	-2.2 (4)	C26B—C27B—C28B—C29B	-3.7 (4)
Br1A-C27A-C28A-C29A	177.4 (2)	Br1B—C27B—C28B—C29B	175.05 (19)
C27A—C28A—C29A—C30A	0.9 (4)	C27B—C28B—C29B—C30B	0.7 (4)
C31A—N2A—C30A—C25A	1.5 (4)	C31B—N2B—C30B—C29B	-178.3 (2)
C31A—N2A—C30A—C29A	-178.4 (2)	C31B—N2B—C30B—C25B	2.3 (3)
C26A—C25A—C30A—N2A	177.1 (2)	C28B—C29B—C30B—N2B	-176.1 (2)
C24A—C25A—C30A—N2A	-2.1 (4)	C28B—C29B—C30B—C25B	3.3 (4)
C26A—C25A—C30A—C29A	-3.0 (3)	C24B—C25B—C30B—N2B	-4.2 (3)
C24A—C25A—C30A—C29A	177.9 (2)	C26B—C25B—C30B—N2B	175.0 (2)
C28A—C29A—C30A—N2A	-178.4 (3)	C24B—C25B—C30B—C29B	176.4 (2)
C28A—C29A—C30A—C25A	1.7 (4)	C26B—C25B—C30B—C29B	-4.4 (3)
C30A—N2A—C31A—O2A	-178.0 (2)	C30B—N2B—C31B—O2B	-176.9 (2)
C30A—N2A—C31A—C23A	1.3 (4)	C30B—N2B—C31B—C23B	2.6 (4)
C32A—O2A—C31A—N2A	14.6 (4)	C32B—O2B—C31B—N2B	10.6 (4)
C32A—O2A—C31A—C23A	-164.7 (3)	C32B—O2B—C31B—C23B	-169.0 (3)
C24A—C23A—C31A—N2A	-3.5 (4)	C24B—C23B—C31B—N2B	-5.4 (4)
C1A—C23A—C31A—N2A	176.6 (2)	C1B—C23B—C31B—N2B	173.9 (2)
C24A—C23A—C31A—O2A	175.9 (2)	C24B—C23B—C31B—O2B	174.1 (2)
C1A—C23A—C31A—O2A	-4.1 (3)	C1B—C23B—C31B—O2B	-6.6 (3)
O3A—C33A—C34A—C35A	6.7 (4)	O4B—C33B—C34B—C35B	-178.3 (3)
O4A—C33A—C34A—C35A	-173.8 (3)	O3B—C33B—C34B—C35B	3.8 (4)
C33A—C34A—C35A—C36A	-176.1 (2)	C33B—C34B—C35B—C36B	-172.7 (2)
C34A—C35A—C36A—O6A	-30.1 (4)	C34B—C35B—C36B—O5B	161.3 (3)
C34A—C35A—C36A—O5A	148.2 (3)	C34B—C35B—C36B—O6B	-16.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01 <i>A</i> —H1 <i>AB</i> ···O4 <i>A</i>	0.86 (4)	1.88 (4)	2.699 (3)	159 (4)
O5 <i>A</i> —H5 <i>A</i> ···O4 <i>B</i>	1.04 (4)	1.58 (4)	2.603 (3)	169 (4)
N1 <i>A</i> —H1 <i>AN</i> ···O3 <i>A</i>	0.98 (4)	1.68 (4)	2.641 (3)	163 (3)
C1 <i>A</i> —H1 <i>A</i> ···O2 <i>A</i>	1.00	2.23	2.767 (3)	112
$C3A$ — $H3AB$ ···Br1 B^{i}	0.99	3.01	3.850 (3)	143
C5 <i>A</i> —H5 <i>AA</i> ···O1 <i>A</i> ⁱⁱ	0.98	2.58	3.501 (3)	157
$C5A$ — $H5AC$ ···Br1 B^{i}	0.98	2.82	3.612 (3)	139
C26A—H26A····O5B ⁱⁱⁱ	0.95	2.54	3.459 (4)	163
C34 <i>A</i> —H34 <i>A</i> ···O5 <i>B</i> ⁱⁱⁱ	0.95	2.52	3.379 (3)	151
$O1B$ —H1 B ····O4 B^{iv}	0.89 (4)	1.88 (4)	2.741 (3)	160 (4)
$O6B$ —H6 B ····O4 A^{\vee}	0.86 (5)	1.80 (5)	2.625 (3)	159 (4)
N1B—H1BN····O3B ^{iv}	0.85 (4)	1.83 (4)	2.632 (3)	158 (4)
C5 <i>B</i> —H5 <i>BA</i> ····O1 <i>B</i> ^{vi}	0.98	2.42	3.337 (4)	156

C5 <i>B</i> —H5 <i>BB</i> ···Br1 <i>A</i>	0.98	2.88	3.468 (3)	119
C5 <i>B</i> —H5 <i>BB</i> ···O6 <i>A</i>	0.98	2.42	3.287 (4)	148

Symmetry codes: (i) x+1, y, z+1; (ii) -x+2, y+1/2, -z+1; (iii) x, y-1, z; (iv) -x+1, y-1/2, -z; (v) x, y+1, z; (vi) -x+1, y+1/2, -z.

3-Benzyl-6-bromo-2-methoxyquinoline (3)

Crystal data

C₁₇H₁₄BrNO $M_r = 328.20$ Orthorhombic, $P2_12_12_1$ a = 4.3606 (6) Å b = 10.820 (2) Å c = 29.886 (11) Å V = 1410.1 (6) Å³ Z = 4F(000) = 664

Data collection

Bruker D8 Quest
diffractometer with PhotonII charge-integrating
pixel array detector (CPAD)
Radiation source: fine focus sealed tube X-ray
source
Triumph curved graphite crystal
monochromator
Detector resolution: 7.4074 pixels mm ⁻¹
ω and phi scans

$D_x = 1.546 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9920 reflections $\theta = 2.3-32.7^{\circ}$ $\mu = 2.91 \text{ mm}^{-1}$ T = 150 KNeedle, colourless $0.41 \times 0.06 \times 0.05 \text{ mm}$

Absorption correction: multi-scan (SADABS2016; Krause *et al.*, 2015) $T_{min} = 0.658$, $T_{max} = 0.747$ 28030 measured reflections 5125 independent reflections 4504 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 33.1^{\circ}$, $\theta_{min} = 2.8^{\circ}$ $h = -6 \rightarrow 5$ $k = -16 \rightarrow 16$ $l = -45 \rightarrow 40$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.023$	Only H-atom displacement parameters refined
$wR(F^2) = 0.057$	$w = 1/[\sigma^2(F_o^2) + (0.0308P)^2]$
S = 1.05	where $P = (F_0^2 + 2F_c^2)/3$
5125 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
196 parameters	$\Delta ho_{ m max} = 0.28 \ m e \ m \AA^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack x determined using
direct methods	1685 quotients $[(I+)-(I-)]/[(I+)+(I-)]$ (Parsons et
Secondary atom site location: difference Fourier	al., 2013)
map	Absolute structure parameter: -0.011 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.33234 (5)	1.09654 (2)	0.10466 (2)	0.03579 (6)

01	0.9170 (3)	0.38638 (11)	0.08083 (4)	0.0283 (3)
N1	0.6613 (3)	0.56540 (12)	0.06323 (4)	0.0214 (2)
C1	0.8442 (4)	0.50555 (14)	0.09018 (5)	0.0214 (3)
C2	0.9779 (3)	0.55404 (15)	0.13019 (6)	0.0206 (3)
C3	0.9145 (3)	0.67422 (16)	0.14000 (6)	0.0212 (3)
H3	1.003058	0.711254	0.165763	0.027 (5)*
C4	0.7166 (3)	0.74501 (15)	0.11205 (5)	0.0191 (3)
C5	0.6405 (4)	0.86982 (15)	0.12085 (6)	0.0227 (3)
Н5	0.724285	0.911329	0.146058	0.028 (5)*
C6	0.4437 (4)	0.92991 (14)	0.09234 (6)	0.0236 (3)
C7	0.3168 (4)	0.87254 (15)	0.05471 (6)	0.0247 (3)
H7	0.181534	0.916658	0.035583	0.034 (6)*
C8	0.3902 (4)	0.75158 (16)	0.04576 (6)	0.0229 (3)
H8	0.303981	0.711802	0.020373	0.031 (5)*
C9	0.5927 (3)	0.68571 (14)	0.07392 (5)	0.0192 (3)
C10	0.7927 (6)	0.33696 (18)	0.04034 (7)	0.0386 (5)
H10A	0.873753	0.383151	0.014732	0.045 (7)*
H10B	0.568653	0.344120	0.040923	0.051 (8)*
H10C	0.850322	0.249746	0.037603	0.048 (7)*
C11	1.1699 (4)	0.47323 (16)	0.16067 (6)	0.0240 (3)
H11A	1.325806	0.524748	0.175900	0.034 (6)*
H11B	1.278720	0.410507	0.142523	0.049 (7)*
C12	0.9739 (3)	0.40881 (15)	0.19546 (5)	0.0205 (3)
C13	0.8353 (4)	0.29555 (14)	0.18642 (6)	0.0246 (3)
H13	0.866613	0.256921	0.158245	0.022 (5)*
C14	0.6512 (4)	0.23861 (15)	0.21838 (6)	0.0294 (3)
H14	0.556300	0.161713	0.211782	0.055 (8)*
C15	0.6057 (4)	0.29308 (18)	0.25961 (7)	0.0310 (4)
H15	0.481362	0.253555	0.281437	0.035 (6)*
C16	0.7424 (4)	0.40577 (18)	0.26897 (6)	0.0302 (4)
H16	0.711861	0.443543	0.297316	0.035 (6)*
C17	0.9236 (4)	0.46362 (16)	0.23709 (6)	0.0267 (4)
H17	1.014500	0.541330	0.243665	0.051 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04286 (10)	0.02454 (8)	0.03998 (11)	0.00613 (8)	-0.00053 (9)	-0.00279 (8)
01	0.0374 (6)	0.0241 (6)	0.0233 (6)	0.0055 (5)	-0.0016 (5)	-0.0014 (5)
N1	0.0230 (6)	0.0238 (6)	0.0175 (6)	0.0004 (5)	-0.0001 (6)	-0.0002(5)
C1	0.0220 (6)	0.0235 (7)	0.0188 (7)	0.0006 (6)	0.0033 (6)	0.0004 (5)
C2	0.0155 (6)	0.0279 (7)	0.0185 (7)	-0.0020 (5)	0.0015 (5)	0.0044 (6)
C3	0.0180 (6)	0.0278 (8)	0.0178 (7)	-0.0033 (5)	0.0000 (5)	0.0014 (6)
C4	0.0177 (6)	0.0243 (7)	0.0153 (7)	-0.0016 (5)	0.0025 (5)	0.0010 (5)
C5	0.0237 (7)	0.0254 (7)	0.0190 (7)	-0.0023 (6)	0.0022 (6)	-0.0016 (5)
C6	0.0244 (7)	0.0221 (7)	0.0242 (8)	0.0006 (5)	0.0061 (6)	0.0006 (6)
C7	0.0241 (7)	0.0286 (7)	0.0215 (8)	0.0026 (6)	0.0024 (7)	0.0049 (6)
C8	0.0229 (7)	0.0295 (8)	0.0164 (7)	-0.0005 (6)	-0.0005 (5)	0.0004 (6)

C9	0.0182 (6)	0.0234 (7)	0.0159 (7)	-0.0011 (5)	0.0030 (5)	0.0017 (6)
C10	0.0623 (13)	0.0286 (9)	0.0250 (9)	0.0078 (9)	-0.0066 (9)	-0.0059 (7)
C11	0.0165 (6)	0.0319 (8)	0.0237 (8)	0.0022 (6)	-0.0013 (7)	0.0036 (6)
C12	0.0169 (6)	0.0242 (7)	0.0205 (7)	0.0047 (6)	-0.0025 (5)	0.0039 (6)
C13	0.0252 (7)	0.0236 (7)	0.0251 (8)	0.0041 (7)	-0.0031 (7)	0.0005 (6)
C14	0.0300 (8)	0.0236 (7)	0.0345 (9)	-0.0001 (7)	-0.0037 (8)	0.0073 (7)
C15	0.0275 (8)	0.0345 (9)	0.0311 (9)	0.0036 (7)	0.0018 (7)	0.0131 (7)
C16	0.0335 (8)	0.0354 (9)	0.0216 (8)	0.0077 (7)	0.0013 (6)	0.0021 (7)
C17	0.0296 (8)	0.0260 (8)	0.0246 (9)	0.0011 (6)	-0.0038 (6)	-0.0011 (7)

Geometric parameters (Å, °)

Br1—C6	1.9030 (16)	С8—Н8	0.9500
O1—C1	1.3570 (19)	C10—H10A	0.9800
O1—C10	1.430 (2)	C10—H10B	0.9800
N1—C1	1.305 (2)	C10—H10C	0.9800
N1—C9	1.373 (2)	C11—C12	1.516 (2)
C1—C2	1.430 (2)	C11—H11A	0.9900
C2—C3	1.361 (2)	C11—H11B	0.9900
C2—C11	1.515 (2)	C12—C13	1.393 (2)
C3—C4	1.424 (2)	C12—C17	1.396 (2)
С3—Н3	0.9500	C13—C14	1.391 (3)
C4—C9	1.415 (2)	С13—Н13	0.9500
C4—C5	1.415 (2)	C14—C15	1.380 (3)
C5—C6	1.373 (2)	C14—H14	0.9500
С5—Н5	0.9500	C15—C16	1.386 (3)
C6—C7	1.399 (3)	С15—Н15	0.9500
C7—C8	1.374 (2)	C16—C17	1.387 (3)
С7—Н7	0.9500	C16—H16	0.9500
C8—C9	1.413 (2)	C17—H17	0.9500
C1	116.15 (14)	O1—C10—H10B	109.5
C1—N1—C9	117.37 (14)	H10A—C10—H10B	109.5
N1-C1-O1	119.16 (14)	O1—C10—H10C	109.5
N1—C1—C2	125.67 (15)	H10A—C10—H10C	109.5
O1—C1—C2	115.16 (14)	H10B-C10-H10C	109.5
C3—C2—C1	116.59 (15)	C2-C11-C12	111.49 (13)
C3—C2—C11	122.27 (16)	C2-C11-H11A	109.3
C1—C2—C11	121.09 (15)	C12—C11—H11A	109.3
C2—C3—C4	120.69 (15)	C2-C11-H11B	109.3
С2—С3—Н3	119.7	C12—C11—H11B	109.3
С4—С3—Н3	119.7	H11A—C11—H11B	108.0
C9—C4—C5	119.53 (14)	C13—C12—C17	118.60 (15)
C9—C4—C3	117.37 (15)	C13—C12—C11	121.08 (15)
C5—C4—C3	123.10 (15)	C17—C12—C11	120.30 (15)
C6—C5—C4	118.88 (15)	C14—C13—C12	120.44 (16)
С6—С5—Н5	120.6	C14—C13—H13	119.8
С4—С5—Н5	120.6	С12—С13—Н13	119.8

C5—C6—C7	122.42 (15)	C15—C14—C13	120.45 (16)
C5-C6-Br1	119.21 (13)	C15—C14—H14	119.8
C7—C6—Br1	118.36 (12)	C13—C14—H14	119.8
C8—C7—C6	119.15 (16)	C14—C15—C16	119.61 (17)
С8—С7—Н7	120.4	C14—C15—H15	120.2
С6—С7—Н7	120.4	C16—C15—H15	120.2
C7—C8—C9	120.69 (16)	C15—C16—C17	120.23 (17)
С7—С8—Н8	119.7	C15—C16—H16	119.9
С9—С8—Н8	119.7	C17—C16—H16	119.9
N1—C9—C8	118.41 (15)	C16—C17—C12	120.66 (16)
N1—C9—C4	122.27 (14)	C16—C17—H17	119.7
C8—C9—C4	119.32 (15)	C12—C17—H17	119.7
O1—C10—H10A	109.5		
C9—N1—C1—O1	179.86 (14)	C1—N1—C9—C4	1.0 (2)
C9—N1—C1—C2	0.5 (2)	C7—C8—C9—N1	-179.29 (15)
C10-01-C1-N1	2.2 (2)	C7—C8—C9—C4	1.0 (2)
C10-01-C1-C2	-178.34 (16)	C5—C4—C9—N1	179.02 (14)
N1—C1—C2—C3	-2.0 (2)	C3—C4—C9—N1	-1.0 (2)
O1—C1—C2—C3	178.66 (14)	C5—C4—C9—C8	-1.2 (2)
N1-C1-C2-C11	175.74 (16)	C3—C4—C9—C8	178.69 (14)
O1—C1—C2—C11	-3.6 (2)	C3—C2—C11—C12	88.62 (19)
C1—C2—C3—C4	1.9 (2)	C1—C2—C11—C12	-88.96 (19)
C11—C2—C3—C4	-175.82 (14)	C2-C11-C12-C13	87.29 (18)
C2—C3—C4—C9	-0.5 (2)	C2-C11-C12-C17	-91.38 (18)
C2—C3—C4—C5	179.43 (14)	C17—C12—C13—C14	-0.1 (2)
C9—C4—C5—C6	1.0 (2)	C11—C12—C13—C14	-178.79 (15)
C3—C4—C5—C6	-178.96 (15)	C12—C13—C14—C15	-0.6 (3)
C4—C5—C6—C7	-0.4 (3)	C13—C14—C15—C16	0.6 (3)
C4—C5—C6—Br1	178.51 (11)	C14—C15—C16—C17	0.1 (3)
C5—C6—C7—C8	0.1 (3)	C15-C16-C17-C12	-0.7 (3)
Br1—C6—C7—C8	-178.82 (13)	C13—C12—C17—C16	0.7 (2)
C6—C7—C8—C9	-0.4 (2)	C11—C12—C17—C16	179.44 (15)
C1—N1—C9—C8	-178.70 (15)		

[4-(6-Bromo-2-methoxyquinolin-3-yl)-3-hydroxy-3-(naphthalen-1-yl)-4-phenylbutyl]dimethylazanium benzoate hydrate (4a)

Crystal data

$C_{32}H_{32}BrN_2O_2^+ \cdot C_7H_5O_2^- \cdot 1.166H_2O_2^- \cdot 1.160H_2O_2^- \cdot 1.166H_2O_2^- \cdot 1.166$	F(000) = 727
$M_r = 698.70$	$D_{\rm x} = 1.342 {\rm Mg m^{-3}}$
Monoclinic, <i>P</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.6384(5) Å	Cell parameters from 9883 reflections
b = 7.9259 (3) Å	$\theta = 2.4 - 31.0^{\circ}$
c = 17.5249 (8) Å	$\mu = 1.24 \text{ mm}^{-1}$
$\beta = 99.8450 \ (17)^{\circ}$	T = 150 K
$V = 1729.63 (12) Å^3$	Rod, colourless
Z = 2	$0.55 \times 0.21 \times 0.13 \text{ mm}$

Data collection

 Bruker D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) Radiation source: fine focus sealed tube X-ray source Triumph curved graphite crystal monochromator Detector resolution: 7.4074 pixels mm⁻¹ <i>ω</i> and phi scans 	Absorption correction: multi-scan (SADABS2016; Krause <i>et al.</i> , 2015) $T_{min} = 0.638$, $T_{max} = 0.746$ 80228 measured reflections 13080 independent reflections 10456 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 33.2^{\circ}$, $\theta_{min} = 2.4^{\circ}$ $h = -19 \rightarrow 19$ $k = -11 \rightarrow 12$ $l = -26 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.073$ S = 1.02 13080 reflections 445 parameters 5 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0275P)^2 + 0.0775P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.36 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.48 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 4051 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons <i>et</i> <i>al.</i> , 2013) Absolute structure parameter: 0.006 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	y	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Br1	1.08589 (2)	0.23491 (3)	-0.10932 (2)	0.03179 (6)	
O1	0.75158 (11)	0.32496 (17)	0.21175 (8)	0.0226 (3)	
H1B	0.726 (2)	0.2891 (12)	0.1673 (15)	0.034*	
02	1.09216 (11)	0.03313 (19)	0.34490 (8)	0.0250 (3)	
03	0.45306 (14)	0.2726 (2)	0.05187 (10)	0.0416 (4)	
O4	0.33269 (13)	0.4451 (2)	-0.01531 (8)	0.0313 (3)	
05	0.67059 (14)	0.2732 (2)	0.06194 (9)	0.0333 (4)	
H5D	0.678 (3)	0.173 (5)	0.0399 (18)	0.050*	
H5E	0.609 (3)	0.282 (4)	0.0580 (18)	0.050*	
O6	1.3652 (11)	-0.1662 (18)	0.2755 (8)	0.061 (5)	0.166 (7)
H6D	1.381796	-0.060138	0.281851	0.091*	0.166 (7)
H6E	1.295716	-0.160377	0.260652	0.091*	0.166 (7)
N1	0.59081 (12)	-0.1394 (2)	0.14129 (9)	0.0209 (3)	
H1	0.621515	-0.107941	0.094301	0.025*	
N2	1.14361 (13)	0.0185 (2)	0.22591 (10)	0.0245 (3)	
C1	0.89931 (14)	0.1917 (2)	0.29663 (10)	0.0177 (3)	

H1A	0 912833	0 105727	0 338929	0.021*
C2	0.77558 (14)	0.1863 (2)	0.26328 (10)	0.0183 (3)
C3	0.74525 (14)	0.0197(2)	0.21876 (10)	0.0189 (3)
НЗА	0.773132	0.022355	0.169312	0.023*
H3B	0 779760	-0.075971	0 249780	0.023*
C4	0.62435(14)	-0.0081(3)	0.20190(10)	0.022
H4A	0.599796	-0.042486	0.250303	0.025*
H4R	0.588573	0.099757	0.184672	0.025*
C5	0.62902 (18)	-0.3115(3)	0.16528 (14)	0.023
U5 И5А	0.607261	-0.390295	0.122359	0.048*
H5R	0.507537	-0.346948	0.122335	0.048*
H5C	0.397337	-0.311025	0.210080	0.048
115C	0.707487 0.47158(16)	-0.1387(3)	0.179237 0.11078 (13)	0.048
	0.47138 (10)	-0.027521	0.000337	0.0300 (4)
HGA	0.447404	-0.162370	0.099337	0.040*
	0.439308	-0.103370	0.103084	0.046*
HOC	0.449245	-0.224808	0.080101	0.040°
C7	0.71480(13)	0.2170(3)	0.33194(9)	0.0202(3)
C8	0.66495 (17)	0.3697 (3)	0.334/9 (12)	0.0292 (4)
H8	0.666506	0.44/440	0.293/30	0.035*
C9	0.6113 (2)	0.41/1 (3)	0.39581 (13)	0.0376 (5)
H9	0.578160	0.524760	0.395368	0.045*
C10	0.6071 (2)	0.3088 (3)	0.45499 (13)	0.0365 (5)
H10	0.571006	0.340816	0.496032	0.044*
C11	0.65593 (18)	0.1492 (3)	0.45603 (12)	0.0315 (5)
C12	0.6518 (2)	0.0367 (4)	0.51821 (15)	0.0478 (7)
H12	0.615365	0.070222	0.558867	0.057*
C13	0.6981 (3)	-0.1164 (4)	0.52119 (18)	0.0583 (8)
H13	0.693912	-0.189679	0.563465	0.070*
C14	0.7528 (2)	-0.1682 (4)	0.46177 (16)	0.0469 (7)
H14	0.785004	-0.276756	0.463796	0.056*
C15	0.75993 (18)	-0.0622 (3)	0.40071 (12)	0.0304 (4)
H15	0.798548	-0.098306	0.361670	0.036*
C16	0.71136 (16)	0.0992 (3)	0.39441 (11)	0.0239 (4)
C17	0.93134 (14)	0.3615 (2)	0.33346 (10)	0.0187 (3)
C18	0.93961 (18)	0.3834 (3)	0.41341 (11)	0.0268 (4)
H18	0.925381	0.291144	0.444733	0.032*
C19	0.9683 (2)	0.5381 (3)	0.44745 (11)	0.0327 (5)
H19	0.973412	0.551193	0.501838	0.039*
C20	0.98963 (19)	0.6738 (3)	0.40278 (11)	0.0314 (5)
H20	1.010481	0.779369	0.426327	0.038*
C21	0.98022 (19)	0.6541 (3)	0.32309 (11)	0.0292 (4)
H21	0.993225	0.747126	0.291782	0.035*
C22	0.95196 (17)	0.4994 (3)	0.28939 (11)	0.0254 (4)
H22	0.946527	0.487081	0.234939	0.031*
C23	0.97303 (14)	0.1486 (2)	0.23939 (10)	0.0188 (3)
C24	0.95734 (14)	0.1960 (2)	0.16317 (10)	0.0199 (4)
H24	0.894360	0.256618	0.141861	0.024*
C25	1.03406 (14)	0.1555 (3)	0.11563 (11)	0.0209 (3)
	· /	× /	× /	· · /

C26	1.02197 (14)	0.2073 (3)	0.03709 (10)	0.0230 (4)
H26	0.961896	0.272839	0.014304	0.028*
C27	1.09881 (16)	0.1605 (3)	-0.00506 (11)	0.0239 (4)
C28	1.18724 (16)	0.0604 (3)	0.02554 (12)	0.0282 (4)
H28	1.237701	0.026726	-0.005945	0.034*
C29	1.19988 (17)	0.0116 (3)	0.10170 (13)	0.0289 (4)
H29	1.259621	-0.056265	0.123021	0.035*
C30	1.12503 (15)	0.0612 (3)	0.14873 (11)	0.0226 (4)
C31	1.07295 (15)	0.0640(2)	0.26745 (11)	0.0207 (3)
C32	1.19411 (18)	-0.0419 (3)	0.37533 (14)	0.0364 (5)
H32A	1.197179	-0.156057	0.354303	0.055*
H32B	1.202846	-0.047604	0.431923	0.055*
H32C	1.251863	0.026661	0.360523	0.055*
C33	0.37747 (16)	0.3748 (3)	0.04720 (12)	0.0258 (4)
C34	0.33351 (16)	0.4182 (3)	0.11951 (11)	0.0244 (4)
C35	0.23897 (19)	0.5090 (3)	0.11598 (13)	0.0331 (5)
H35	0.202051	0.548308	0.067447	0.040*
C36	0.1981 (2)	0.5426 (4)	0.18289 (15)	0.0487 (7)
H36	0.133006	0.603990	0.179969	0.058*
C37	0.2515 (2)	0.4876 (5)	0.25356 (15)	0.0531 (8)
H37	0.223153	0.510905	0.299262	0.064*
C38	0.3462 (2)	0.3986 (4)	0.25814 (14)	0.0523 (8)
H38	0.383205	0.360736	0.306920	0.063*
C39	0.3871 (2)	0.3647 (4)	0.19136 (13)	0.0394 (6)
Н39	0.452599	0.304104	0.194674	0.047*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.03261 (10)	0.04237 (12)	0.02255 (8)	-0.00372 (11)	0.01087 (6)	-0.00332 (10)
01	0.0289 (7)	0.0205 (7)	0.0173 (6)	0.0052 (5)	0.0002 (5)	0.0021 (5)
O2	0.0232 (6)	0.0262 (7)	0.0241 (6)	0.0044 (5)	-0.0002 (5)	0.0040 (6)
O3	0.0426 (9)	0.0432 (12)	0.0433 (9)	0.0160 (8)	0.0199 (7)	0.0064 (7)
O4	0.0368 (8)	0.0339 (8)	0.0242 (7)	0.0011 (7)	0.0077 (6)	0.0028 (6)
O5	0.0398 (8)	0.0321 (10)	0.0241 (7)	-0.0038 (7)	-0.0054 (6)	0.0037 (6)
O6	0.062 (9)	0.057 (9)	0.070 (10)	0.003 (6)	0.029 (7)	-0.006 (7)
N1	0.0207 (7)	0.0233 (8)	0.0181 (7)	-0.0019 (6)	0.0012 (6)	-0.0003 (6)
N2	0.0190 (7)	0.0245 (9)	0.0302 (8)	0.0031 (6)	0.0047 (6)	0.0034 (7)
C1	0.0204 (7)	0.0174 (9)	0.0154 (7)	0.0014 (6)	0.0036 (6)	0.0016 (6)
C2	0.0196 (7)	0.0195 (9)	0.0159 (7)	0.0018 (6)	0.0032 (6)	-0.0006 (6)
C3	0.0189 (8)	0.0194 (9)	0.0186 (7)	0.0017 (6)	0.0035 (6)	-0.0004 (6)
C4	0.0192 (8)	0.0245 (9)	0.0199 (8)	0.0000 (7)	0.0044 (6)	-0.0035 (7)
C5	0.0311 (10)	0.0230 (11)	0.0404 (11)	-0.0007 (8)	0.0036 (9)	0.0005 (8)
C6	0.0209 (9)	0.0387 (12)	0.0301 (10)	-0.0047 (8)	-0.0022 (8)	0.0033 (9)
C7	0.0202 (7)	0.0236 (10)	0.0166 (6)	0.0026 (8)	0.0023 (5)	-0.0022 (7)
C8	0.0322 (10)	0.0302 (11)	0.0265 (9)	0.0085 (9)	0.0091 (8)	0.0004 (8)
C9	0.0412 (12)	0.0380 (13)	0.0367 (12)	0.0113 (10)	0.0158 (10)	-0.0068 (10)
C10	0.0343 (11)	0.0499 (14)	0.0285 (10)	0.0041 (10)	0.0144 (9)	-0.0078 (10)

C11	0.0292 (11)	0.0426 (13)	0.0251 (9)	-0.0040 (10)	0.0112 (8)	-0.0013 (9)
C12	0.0601 (17)	0.0552 (17)	0.0344 (12)	0.0006 (14)	0.0257 (12)	0.0081 (12)
C13	0.080(2)	0.0565 (19)	0.0468 (16)	0.0065 (16)	0.0342 (15)	0.0234 (14)
C14	0.0606 (17)	0.0397 (15)	0.0450 (14)	0.0093 (12)	0.0225 (12)	0.0186 (12)
C15	0.0355 (11)	0.0291 (11)	0.0284 (10)	0.0000 (9)	0.0105 (8)	0.0047 (8)
C16	0.0234 (9)	0.0281 (10)	0.0205 (8)	-0.0027 (7)	0.0050 (7)	-0.0008 (7)
C17	0.0206 (8)	0.0189 (8)	0.0159 (7)	0.0014 (7)	0.0008 (6)	0.0010 (6)
C18	0.0401 (11)	0.0225 (10)	0.0165 (8)	-0.0047 (8)	0.0008 (7)	0.0027 (7)
C19	0.0522 (13)	0.0290 (11)	0.0154 (8)	-0.0069 (10)	0.0018 (8)	-0.0016 (8)
C20	0.0500 (13)	0.0219 (10)	0.0209 (9)	-0.0066 (9)	0.0020 (8)	-0.0027 (8)
C21	0.0471 (12)	0.0200 (10)	0.0206 (8)	-0.0058 (9)	0.0058 (8)	0.0013 (7)
C22	0.0379 (11)	0.0223 (10)	0.0169 (8)	-0.0046 (8)	0.0068 (7)	0.0003 (7)
C23	0.0179 (8)	0.0164 (9)	0.0220 (8)	0.0001 (6)	0.0032 (6)	-0.0011 (7)
C24	0.0184 (7)	0.0212 (10)	0.0204 (7)	0.0026 (6)	0.0042 (6)	0.0005 (6)
C25	0.0188 (8)	0.0212 (9)	0.0238 (8)	-0.0004 (7)	0.0063 (6)	-0.0015 (7)
C26	0.0221 (8)	0.0252 (11)	0.0223 (7)	0.0006 (7)	0.0054 (6)	-0.0013 (7)
C27	0.0259 (9)	0.0238 (9)	0.0237 (8)	-0.0052 (7)	0.0093 (7)	-0.0043 (8)
C28	0.0222 (9)	0.0302 (11)	0.0349 (11)	-0.0013 (8)	0.0125 (8)	-0.0059 (9)
C29	0.0212 (9)	0.0293 (11)	0.0378 (11)	0.0035 (8)	0.0100 (8)	0.0003 (9)
C30	0.0195 (8)	0.0209 (9)	0.0283 (9)	0.0004 (7)	0.0062 (7)	0.0001 (7)
C31	0.0200 (8)	0.0174 (8)	0.0238 (8)	-0.0014 (7)	0.0013 (7)	0.0011 (7)
C32	0.0299 (11)	0.0417 (14)	0.0333 (11)	0.0097 (10)	-0.0070 (9)	0.0046 (10)
C33	0.0273 (9)	0.0243 (10)	0.0272 (9)	-0.0023 (8)	0.0083 (7)	0.0008 (8)
C34	0.0254 (9)	0.0241 (10)	0.0240 (9)	0.0001 (7)	0.0049 (7)	-0.0013 (7)
C35	0.0313 (11)	0.0417 (14)	0.0259 (10)	0.0102 (10)	0.0042 (8)	0.0009 (9)
C36	0.0409 (13)	0.0683 (19)	0.0383 (13)	0.0234 (13)	0.0110 (11)	-0.0028 (13)
C37	0.0581 (17)	0.076 (2)	0.0279 (11)	0.0201 (15)	0.0141 (11)	-0.0082 (13)
C38	0.0554 (16)	0.076 (2)	0.0248 (11)	0.0252 (15)	0.0053 (11)	0.0020 (12)
C39	0.0383 (12)	0.0507 (15)	0.0294 (11)	0.0190 (11)	0.0061 (9)	0.0023 (10)

Geometric parameters (Å, °)

Br1—C27	1.900 (2)	C13—C14	1.406 (4)
O1—C2	1.422 (2)	C13—H13	0.9500
O1—H1B	0.84 (3)	C14—C15	1.375 (3)
O2—C31	1.360 (2)	C14—H14	0.9500
O2—C32	1.437 (2)	C15—C16	1.414 (3)
O3—C33	1.244 (3)	C15—H15	0.9500
O4—C33	1.273 (3)	C17—C22	1.388 (3)
O5—H5D	0.90 (4)	C17—C18	1.398 (3)
O5—H5E	0.77 (3)	C18—C19	1.385 (3)
O6—H6D	0.8692	C18—H18	0.9500
O6—H6E	0.8735	C19—C20	1.383 (3)
N1-C5	1.484 (3)	C19—H19	0.9500
N1-C6	1.489 (2)	C20—C21	1.390 (3)
N1-C4	1.495 (2)	C20—H20	0.9500
N1—H1	1.0000	C21—C22	1.381 (3)
N2—C31	1.296 (2)	C21—H21	0.9500

N2-C30	1.375 (3)	C22—H22	0.9500
C1—C17	1.517 (2)	C23—C24	1.369 (2)
C1—C23	1.520 (2)	C23—C31	1.440 (3)
C1—C2	1.574 (2)	C24—C25	1.419 (2)
C1—H1A	1.0000	C24—H24	0.9500
C2—C3	1.548 (3)	C25—C30	1.410 (3)
C2—C7	1.553 (2)	C25—C26	1.419 (3)
C3—C4	1.522 (2)	C26—C27	1.368 (3)
С3—НЗА	0.9900	C26—H26	0.9500
C3—H3B	0.9900	C27—C28	1401(3)
	0.9900	C_{28} C_{29}	1.101(3) 1.372(3)
C4—H4B	0.9900	C28-H28	0.9500
C5 H5A	0.9900	$C_{20} = C_{120}$	1.413(3)
C5 USP	0.9800	$C_{29} = C_{30}$	0.0500
C5	0.9800	C23—1123	0.9500
	0.9800	C32—IJ32A C22_JJ22B	0.9800
	0.9800	C32—R32B	0.9800
Со—Нов	0.9800	C32—H32C	0.9800
С6—Н6С	0.9800	C33—C34	1.508 (3)
C/—C8	1.369 (3)	C34—C35	1.387 (3)
C7—C16	1.446 (3)	C34—C39	1.390 (3)
C8—C9	1.412 (3)	C35—C36	1.385 (3)
C8—H8	0.9500	С35—Н35	0.9500
C9—C10	1.354 (4)	C36—C37	1.376 (4)
С9—Н9	0.9500	С36—Н36	0.9500
C10—C11	1.406 (3)	C37—C38	1.380 (4)
C10—H10	0.9500	С37—Н37	0.9500
C11—C12	1.416 (3)	C38—C39	1.384 (3)
C11—C16	1.440 (3)	C38—H38	0.9500
C12—C13	1.345 (5)	С39—Н39	0.9500
С12—Н12	0.9500		
C2	109.5	C15—C16—C7	125.05 (18)
C31—O2—C32	116.16 (16)	C11—C16—C7	118.14 (19)
H5D—O5—H5E	103 (3)	C22—C17—C18	118.08 (17)
H6D—O6—H6E	101.2	C22—C17—C1	121.56 (15)
C5—N1—C6	109.94 (17)	C18—C17—C1	120.36 (16)
C5—N1—C4	113.54 (15)	C19—C18—C17	120.74 (18)
C6-N1-C4	109 21 (16)	C19—C18—H18	119.6
C5-N1-H1	108.0	C17—C18—H18	119.6
C6—N1—H1	108.0	C^{20} C^{19} C^{18}	120 44 (18)
C4—N1—H1	108.0	$C_{20} - C_{19} - H_{19}$	119.8
$C_{31} = N_{2} = C_{30}$	117.76 (16)	C_{18} C_{19} H_{19}	119.8
C17 - C1 - C23	109 33 (14)	C19-C20-C21	110.3 (2)
C17 - C1 - C23	110.00 (14)	C19 - C20 - C21	119.5 (2)
$C_{1,-}C_{1,-}C_{2}$	110.99(14) 115.54(14)	$C_{1} = C_{20} = H_{20}$	120.5
$C_{23} - C_{1} - C_{2}$	115.54 (14)	$C_{21} = C_{20} = 1120$ $C_{22} = C_{21} = C_{20}$	120.5
$C_{1} = C_{1} = \Pi_{1} \Lambda$	106.0	$C_{22} = C_{21} = C_{20}$	120.05 (19)
C_{23} C_{1} H_{1A}	100.0	$C_{22} - C_{21} - T_{21}$	120.0
$U_2 - U_1 - \Pi_1 A$	100.8	U20-U21-H21	120.0

O1—C2—C3	109.36 (14)	C21—C22—C17	121.36 (17)
O1—C2—C7	106.90 (15)	C21—C22—H22	119.3
C3—C2—C7	114.32 (15)	C17—C22—H22	119.3
O1—C2—C1	107.77 (14)	C24—C23—C31	115.67 (16)
C3—C2—C1	110.81 (14)	C24—C23—C1	125.41 (16)
C7—C2—C1	107.42 (13)	C31—C23—C1	118.68 (16)
C4—C3—C2	112.06 (15)	C23—C24—C25	120.77 (16)
С4—С3—Н3А	109.2	C23—C24—H24	119.6
С2—С3—НЗА	109.2	C25—C24—H24	119.6
C4—C3—H3B	109.2	C_{30} C_{25} C_{24}	117.98 (17)
C^2 — C^3 — H^3B	109.2	C_{30} C_{25} C_{26}	119.80 (16)
H_{3A} C_{3} H_{3B}	107.9	C_{24} C_{25} C_{26} C_{26}	122.23(17)
N1-C4-C3	113 09 (15)	$C_{27} - C_{26} - C_{25}$	122.23(17) 11848(18)
N1—C4—H4A	109.0	$C_{27} = C_{26} = H_{26}$	120.8
$C_3 - C_4 - H_4 A$	109.0	C_{25} C_{26} H_{26}	120.8
N1-C4-H4B	109.0	$C_{25} = C_{20} = C_{20}$	120.0 122.72(19)
$C_3 - C_4 - H_4 B$	109.0	$C_{26} = C_{27} = C_{26}$	122.72(19) 118.87(16)
$H_{AA} = C_A = H_{AB}$	107.8	$C_{20} = C_{27} = Br_1$	118.07(10) 118.41(14)
N1 - C5 - H5A	109.5	$C_{20} = C_{27} = D_{11}$	118.98(18)
N1_C5_H5B	109.5	$C_{29} = C_{28} = H_{28}$	120.5
$H_{5}A = C_{5} = H_{5}B$	109.5	$C_{27} = C_{28} = H_{28}$	120.5
N1 C5 H5C	109.5	$C_{27} = C_{20} = C_{120}$	120.3 120.7(2)
$H_{5}A = C_{5} = H_{5}C$	109.5	$C_{28} = C_{29} = C_{30}$	120.7 (2)
H5B C5 H5C	109.5	$C_{20} = C_{20} = H_{20}$	119.6
N1 C6 H6A	109.5	$N_2 = C_{30} = C_{25}$	119.0
N1 C6 H6P	109.5	$N_2 = C_{30} = C_{23}$	121.08(17) 110.12(18)
	109.5	12-030-029	119.12(18)
H0A - C0 - H0B	109.5	$C_{23} = C_{30} = C_{29}$	119.19(10) 110.21(17)
	109.5	$N_2 = C_3 = C_2$	119.21(17)
H6P C6 H6C	109.5	$N_2 = C_3 I_1 = C_{23}$	123.87(17)
H0B-C0-H0C	109.5	02 - C31 - C23	114.92 (10)
$C_8 - C_7 - C_{16}$	118.01 (16)	02 - C32 - H32A	109.5
$C_8 = C_7 = C_2$	11/.30(1/)	U_2 — U_32 — H_32B	109.5
C16 - C7 - C2	124.64 (18)	H32A—C32—H32B	109.5
C/-C8-C9	123.1 (2)	02 - C32 - H32C	109.5
C/-C8-H8	118.4	H32A - C32 - H32C	109.5
C9—C8—H8	118.4	H32B = C32 = H32C	109.5
C10 - C9 - C8	119.9 (2)	03-03-04	124.42 (19)
С10—С9—Н9	120.1	03-033-034	118.83 (19)
C8—C9—H9	120.1	04-033-034	116.74 (18)
C9—C10—C11	120.4 (2)	C35—C34—C39	118.76 (19)
С9—С10—Н10	119.8	C35—C34—C33	121.28 (18)
C11—C10—H10	119.8	C39—C34—C33	119.95 (19)
C10—C11—C12	120.2 (2)	C36—C35—C34	120.3 (2)
C10—C11—C16	120.5 (2)	C36—C35—H35	119.8
C12—C11—C16	119.3 (2)	C34—C35—H35	119.8
C13—C12—C11	121.7 (2)	C37—C36—C35	120.3 (2)
C13—C12—H12	119.2	C37—C36—H36	119.9
C11—C12—H12	119.2	C35—C36—H36	119.9

C12—C13—C14	120.0 (2)	C36—C37—C38	120.1 (2)
C12—C13—H13	120.0	С36—С37—Н37	120.0
C14—C13—H13	120.0	С38—С37—Н37	120.0
C15—C14—C13	120.3 (3)	C37—C38—C39	119.7 (2)
C15—C14—H14	119.9	С37—С38—Н38	120.1
C13—C14—H14	119.9	C39—C38—H38	120.1
C14—C15—C16	121.9 (2)	C38—C39—C34	120.8 (2)
C14—C15—H15	1191	C_{38} — C_{39} —H39	119.6
C16-C15-H15	119.1	C_{34} C_{39} H_{39}	119.6
C_{15} C_{16} C_{11}	116.81 (19)		119.0
	110.01 (17)		
C17—C1—C2—O1	54.82 (17)	C19—C20—C21—C22	-1.3 (4)
C23—C1—C2—O1	-70.37 (18)	C20—C21—C22—C17	0.7 (3)
C17—C1—C2—C3	174.44 (14)	C18—C17—C22—C21	0.2 (3)
C23—C1—C2—C3	49.3 (2)	C1—C17—C22—C21	179.44 (19)
C17—C1—C2—C7	-60.05 (19)	C17—C1—C23—C24	-87.3 (2)
C23—C1—C2—C7	174.77 (16)	C2—C1—C23—C24	38.7 (2)
O1—C2—C3—C4	-74.49 (18)	C17—C1—C23—C31	86.83 (19)
C7—C2—C3—C4	45.3 (2)	C2-C1-C23-C31	-147.14 (16)
C1—C2—C3—C4	166.84 (14)	C31—C23—C24—C25	2.7 (3)
C5—N1—C4—C3	65.8 (2)	C1—C23—C24—C25	177.00 (17)
C6—N1—C4—C3	-171.11 (16)	C23—C24—C25—C30	1.8 (3)
C2-C3-C4-N1	164.04 (15)	C23—C24—C25—C26	-177.98 (18)
01-C2-C7-C8	-7.6 (2)	C30—C25—C26—C27	1.3 (3)
C3—C2—C7—C8	-128.77(19)	C24—C25—C26—C27	-178.92(18)
C1-C2-C7-C8	107.84 (18)	C25—C26—C27—C28	1.7 (3)
01-C2-C7-C16	175.18 (17)	C_{25} — C_{26} — C_{27} — Br_{1}	-178.04(14)
C_{3} C_{2} C_{7} C_{16}	54.0 (2)	$C_{26} - C_{27} - C_{28} - C_{29}$	-2.4(3)
C1 - C2 - C7 - C16	-694(2)	Br1 - C27 - C28 - C29	177 34 (17)
$C_{16} - C_{7} - C_{8} - C_{9}$	0.4(3)	C_{27} C_{28} C_{29} C_{30}	0.0(3)
$C^2 - C^7 - C^8 - C^9$	-177.0(2)	C_{31} N_{2} C_{30} C_{25}	1.8(3)
C_{7} C_{8} C_{9} C_{10}	-0.4(4)	C_{31} N2 C_{30} C_{29}	-17923(19)
$C_{8} - C_{9} - C_{10} - C_{11}$	0.1(1)	$C_{24} - C_{25} - C_{30} - N_{2}^{2}$	-43(3)
C9-C10-C11-C12	179.7(3)	$C_{26} - C_{25} - C_{30} - N_{2}$	$175\ 47\ (18)$
C9-C10-C11-C16	0.3(3)	$C_{24} - C_{25} - C_{30} - C_{29}$	176 72 (18)
C_{10} C_{11} C_{12} C_{13}	-179.6(3)	$C_{24} = C_{25} = C_{30} = C_{29}$	-35(3)
$C_{10} = C_{11} = C_{12} = C_{13}$	-0.2(4)	$C_{20} = C_{20} = C_{30} = C_{20}$	-176.2(2)
C_{11} C_{12} C_{13} C_{14}	0.2(4)	$C_{20} = C_{20} = C_{30} = C_{20}$	170.2(2)
C12 - C13 - C14	0.5(5)	$C_{20} = C_{20} = C_{30} = C_{20}$	-175.89(17)
$C_{12} = C_{13} = C_{14} = C_{15} = C_{16}$	-14(4)	C_{30} N2 C_{31} C_{23}	34(3)
$C_{13} - C_{14} - C_{15} - C_{16} - C_{10}$	1.4(4)	$C_{30} = N_2 = C_{31} = C_{23}$	3.4(3)
$C_{14} = C_{15} = C_{16} = C_{17}$	-1707(2)	$C_{32} = 02 = C_{31} = 102$	-176.38(18)
$C_{14} = C_{15} = C_{10} = C_{10}$	1788(2)	$C_{22} = C_{22} = C_{21} = C_{23}$	-57(2)
$C_{10} - C_{11} - C_{10} - C_{13}$	-0.6(3)	$C_{27} = C_{23} = C_{31} = N_2$	3.7 (3) 170 65 (19)
C_{12} C_{11} C_{16} C_{7}	-0.2(3)	$C_1 = C_2 = C_3 $	172.03(10)
$C_{10} - C_{11} - C_{10} - C_{7}$	0.2(3)	$C_{24} = C_{23} = C_{31} = O_{2}$	-11(2)
$C_{12} - C_{11} - C_{10} - C_{10}$	1/9.0(2) -1701(2)	$C_1 = C_{23} = C_{31} = C_{25}$	1.1(2)
$C_{0} - C_{1} - C_{10} - C_{13}$	1/9.1(2)	03 - 033 - 034 - 035	-109.4(2)
U2-U/-U10-U13	-1.9(3)	04-033-034-033	7./(3)

C8—C7—C16—C11	-0.2 (3)	O3—C33—C34—C39	9.6 (3)
C2C7C16C11	177.02 (17)	O4—C33—C34—C39	-171.3 (2)
C23—C1—C17—C22	46.1 (2)	C39—C34—C35—C36	-1.2 (4)
C2-C1-C17-C22	-82.5 (2)	C33—C34—C35—C36	177.8 (3)
C23—C1—C17—C18	-134.71 (18)	C34—C35—C36—C37	0.6 (5)
C2-C1-C17-C18	96.7 (2)	C35—C36—C37—C38	0.1 (5)
C22-C17-C18-C19	-0.5 (3)	C36—C37—C38—C39	-0.1 (5)
C1—C17—C18—C19	-179.7 (2)	C37—C38—C39—C34	-0.5 (5)
C17—C18—C19—C20	-0.2 (4)	C35—C34—C39—C38	1.1 (4)
C18-C19-C20-C21	1.1 (4)	C33—C34—C39—C38	-177.9 (3)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H1 <i>B</i> ···O5	0.84	1.87	2.681 (2)	164
O5—H5 <i>D</i> ···O4 ⁱ	0.90 (4)	1.85 (4)	2.724 (2)	163 (3)
O5—H5 <i>E</i> ···O3	0.77 (3)	1.96 (3)	2.724 (2)	172 (4)
O6—H6 <i>E</i> ···N2	0.87	2.38	3.148 (13)	147
N1— $H1$ ···O4 ⁱ	1.00	1.64	2.643 (2)	178
C5—H5C···Br1 ⁱⁱ	0.98	3.09	3.910(2)	142
С6—Н6А…ОЗ	0.98	2.53	3.465 (3)	161
C6—H6 <i>B</i> ···O6 ⁱⁱⁱ	0.98	2.28	3.249 (13)	169
C28—H28…O5 ⁱⁱ	0.95	2.59	3.421 (3)	146

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*; (ii) -*x*+2, *y*-1/2, -*z*; (iii) *x*-1, *y*, *z*.

[4-(6-Bromo-2-methoxyquinolin-3-yl)-3-hydroxy-3-(naphthalen-1-yl)-4-phenylbutyl]dimethylazanium benzoate acetonitrile 0.742-solvate monohydrate (4b)

 $k = -8 \rightarrow 10$ $l = -22 \rightarrow 22$

Crystal data

$C_{32}H_{32}BrN_{2}O_{2}^{+}\cdot C_{7}H_{5}O_{2}^{-}\cdot 0.742C_{2}H_{3}N\cdot H_{2}O$ $M_{r} = 726.10$ Monoclinic, $P2_{1}$ $a = 12.8661$ (8) Å b = 8.0386 (5) Å c = 17.4704 (10) Å $\beta = 101.093$ (3)° V = 1773.13 (19) Å ³ Z = 2	F(000) = 757 $D_x = 1.360 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9023 reflections $\theta = 2.6-79.1^{\circ}$ $\mu = 1.97 \text{ mm}^{-1}$ T = 150 K Needle, colourless $0.31 \times 0.05 \times 0.05 \text{ mm}$
Data collection	
Bruker D8 Quest diffractometer with PhotonIII_C14 charge- integrating and photon counting pixel array detector	Absorption correction: multi-scan (SADABS2016; Krause <i>et al.</i> , 2015) $T_{\min} = 0.599, T_{\max} = 0.754$ 39739 measured reflections
Radiation source: I-mu-S microsource X-ray tube	7360 independent reflections 6750 reflections with $I > 2\sigma(I)$
Laterally graded multilayer (Goebel) mirror monochromator	$R_{\rm int} = 0.060$ $ heta_{ m max} = 80.1^{\circ}, \ heta_{ m min} = 2.6^{\circ}$
Detector resolution: 7.4074 pixels mm ⁻¹	$h = -16 \rightarrow 16$

 ω and phi scans

Refinement

Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0233P)^2 + 1.042P]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.40 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack <i>x</i> determined using 2778 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons <i>et</i>
<i>al.</i> , 2013) Absolute structure parameter: 0.004 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	1.09186 (3)	0.23149 (6)	-0.10436 (2)	0.04184 (12)	
01	0.7542 (2)	0.3259 (3)	0.20992 (15)	0.0271 (5)	
H1B	0.734 (4)	0.292 (2)	0.168 (3)	0.041*	
O2	1.08646 (19)	0.0320 (3)	0.35039 (14)	0.0297 (5)	
O3	0.4583 (2)	0.2868 (4)	0.05847 (18)	0.0497 (8)	
O4	0.3385 (2)	0.4448 (4)	-0.01724 (15)	0.0373 (6)	
05	0.6707 (3)	0.2738 (4)	0.05844 (16)	0.0387 (7)	
H5D	0.674 (5)	0.174 (4)	0.041 (3)	0.058*	
H5E	0.607 (2)	0.288 (7)	0.058 (3)	0.058*	
N1	0.5911 (2)	-0.1342 (4)	0.14353 (17)	0.0272 (6)	
H1	0.618783	-0.106871	0.095314	0.033*	
N2	1.1414 (2)	0.0196 (4)	0.23270 (18)	0.0292 (6)	
C1	0.9000 (2)	0.1962 (4)	0.29767 (17)	0.0228 (7)	
H1A	0.913127	0.113403	0.341185	0.027*	
C2	0.7781 (3)	0.1907 (4)	0.26263 (18)	0.0228 (7)	
C3	0.7471 (3)	0.0265 (4)	0.21840 (19)	0.0234 (7)	
H3A	0.772164	0.028938	0.168253	0.028*	
H3B	0.782695	-0.067448	0.249584	0.028*	
C4	0.6277 (3)	-0.0017 (5)	0.20251 (19)	0.0249 (7)	
H4A	0.605984	-0.032128	0.252035	0.030*	
H4B	0.591887	0.103914	0.184090	0.030*	
C5	0.6308 (3)	-0.3018 (5)	0.1703 (2)	0.0391 (9)	
H5A	0.605300	-0.383658	0.129406	0.059*	
H5B	0.604938	-0.331264	0.217728	0.059*	
H5C	0.708438	-0.301159	0.181360	0.059*	
C6	0.4732 (3)	-0.1344 (6)	0.1230 (2)	0.0366 (9)	
H6A	0.448325	-0.025168	0.102189	0.055*	

H6B	0.444151	-0.158068	0.169733	0.055*
H6C	0.449601	-0.219985	0.083535	0.055*
C7	0.7184 (2)	0.2225 (5)	0.33036 (16)	0.0237 (6)
C8	0.6696 (3)	0.3737 (5)	0.3321 (2)	0.0322 (8)
H8	0.670541	0.448836	0.290297	0.039*
С9	0.6182 (3)	0.4236 (6)	0.3928 (2)	0.0391 (9)
Н9	0.586471	0.530466	0.391630	0.047*
C10	0.6143 (3)	0.3178 (6)	0.4529(2)	0.0371 (9)
H10	0.578544	0.350206	0.493248	0.045*
C11	0.6629 (3)	0.1604(5)	0.4556(2)	0.0328(8)
C12	0.6601(4)	0.0520 (6)	0.1000(2) 0.5190(2)	0.0320(0)
H12	0.624115	0.086173	0.559045	0.056*
C13	0.024113 0.7070(5)	-0.000175	0.52/1(3)	0.0578(14)
H13	0.7070 (3)	-0.168798	0.5241 (5)	0.0578 (14)
C14	0.764207	-0.1511(6)	0.367337	0.009
U14	0.7001(4) 0.702010	-0.1311(0) -0.257285	0.4030 (3)	0.0477 (11)
П14 С15	0.793019	-0.237283	0.408343	0.037
U15	0.7646 (3)	-0.0505(5)	0.4024 (2)	0.0329 (8)
HIS	0.800873	-0.088643	0.363250	0.040*
C16	0./16/(3)	0.1088 (5)	0.3945 (2)	0.0261 (7)
C17	0.9317 (3)	0.3644 (4)	0.33358 (19)	0.0243 (7)
C18	0.9390 (3)	0.3895 (5)	0.41323 (19)	0.0287 (7)
H18	0.925588	0.299474	0.445188	0.034*
C19	0.9654 (3)	0.5436 (5)	0.4466 (2)	0.0319 (8)
H19	0.970429	0.558180	0.501130	0.038*
C20	0.9846 (3)	0.6768 (5)	0.4009 (2)	0.0340 (8)
H20	1.002007	0.782928	0.423684	0.041*
C21	0.9780 (3)	0.6530 (5)	0.3214 (2)	0.0341 (8)
H21	0.991414	0.743347	0.289646	0.041*
C22	0.9520 (3)	0.4987 (5)	0.2883 (2)	0.0301 (8)
H22	0.947839	0.484164	0.233828	0.036*
C23	0.9726 (3)	0.1487 (4)	0.2416 (2)	0.0241 (7)
C24	0.9580 (3)	0.1938 (4)	0.16468 (18)	0.0242 (7)
H24	0.896018	0.253246	0.141633	0.029*
C25	1.0347 (3)	0.1528 (5)	0.1189 (2)	0.0263 (7)
C26	1.0240 (3)	0.2018 (5)	0.04000 (19)	0.0289 (8)
H26	0.964322	0.264196	0.015139	0.035*
C27	1.1014 (3)	0.1574 (5)	0.0004 (2)	0.0312 (8)
C28	1,1884 (3)	0.0584 (5)	0.0338 (2)	0.0361 (9)
H28	1.238547	0.023743	0.003564	0.043*
C29	1 2000 (3)	0.0124 (6)	0.1104(3)	0.0378(9)
H29	1 259208	-0.052812	0.133734	0.045*
C30	1.239200	0.052012	0.1550 (2)	0.045 0.0285 (7)
C31	1.1240(3) 1.0703(3)	0.0612(3)	0.1330(2) 0.2727(2)	0.0265(7)
C32	1.0703(3) 1 1850(3)	-0.044(4)	0.2727(2) 0.3846(3)	0.0231(7)
UJ2 H32A	1 101281	-0.152120	0.358001	0.0+27(10) 0.064*
1132A 1132D	1.171201	-0.063515	0.550771	0.004
1132D 1132C	1.10/110	0.003313	0.440374	0.004
п32U	1.243//1	0.02/348	0.3/7920	0.004*
033	0.3819 (3)	0.3840 (5)	0.0484 (2)	0.0310 (8)

C34	0.3376 (12)	0.439 (3)	0.1162 (6)	0.030 (2)	0.742 (7)
C35	0.2342 (10)	0.5018 (15)	0.1055 (5)	0.0338 (19)	0.742 (7)
H35	0.193862	0.513732	0.054183	0.041*	0.742 (7)
C36	0.1905 (9)	0.5461 (17)	0.1683 (5)	0.047 (2)	0.742 (7)
H36	0.118077	0.577683	0.160811	0.057*	0.742 (7)
C37	0.2530 (7)	0.5447 (12)	0.2437 (5)	0.0531 (19)	0.742 (7)
H37	0.225227	0.586384	0.286502	0.064*	0.742 (7)
C38	0.3550 (6)	0.4828 (10)	0.2555 (4)	0.0467 (16)	0.742 (7)
H38	0.396204	0.475671	0.306703	0.056*	0.742 (7)
C39	0.3966 (5)	0.4313 (9)	0.1920 (4)	0.0371 (14)	0.742 (7)
H39	0.466935	0.389697	0.200206	0.044*	0.742 (7)
C34B	0.331 (4)	0.429 (8)	0.1208 (16)	0.0242 (7)	0.258 (7)
C35B	0.239 (3)	0.526 (5)	0.1165 (17)	0.035 (4)	0.258 (7)
H35B	0.202750	0.564683	0.067136	0.042*	0.258 (7)
C36B	0.202 (3)	0.567 (5)	0.1825 (16)	0.044 (4)	0.258 (7)
H36B	0.150076	0.651410	0.181779	0.053*	0.258 (7)
C37B	0.2432 (18)	0.479 (3)	0.2514 (14)	0.047 (3)	0.258 (7)
H37B	0.205535	0.477535	0.293157	0.056*	0.258 (7)
C38B	0.3375 (16)	0.396 (3)	0.2586 (11)	0.047 (3)	0.258 (7)
H38B	0.373369	0.359002	0.308434	0.057*	0.258 (7)
C39B	0.3805 (17)	0.365 (3)	0.1932 (11)	0.039 (3)	0.258 (7)
H39B	0.443068	0.299799	0.197365	0.047*	0.258 (7)
N3	0.4791 (5)	-0.2008 (8)	0.3556 (4)	0.0620 (18)	0.742 (7)
C40	0.4502 (5)	-0.0703 (9)	0.3379 (4)	0.0477 (16)	0.742 (7)
C41	0.4178 (6)	0.0985 (10)	0.3164 (5)	0.063 (2)	0.742 (7)
H41A	0.473979	0.155009	0.295727	0.12 (4)*	0.742 (7)
H41B	0.404449	0.158210	0.362451	0.14 (5)*	0.742 (7)
H41C	0.352857	0.096518	0.276432	0.06 (2)*	0.742 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0403 (2)	0.0597 (3)	0.02848 (18)	-0.0089 (2)	0.01393 (14)	-0.0069 (2)
01	0.0346 (14)	0.0229 (13)	0.0218 (12)	0.0020 (10)	0.0004 (10)	0.0026 (9)
O2	0.0255 (12)	0.0329 (14)	0.0287 (13)	0.0057 (10)	-0.0002 (10)	0.0040 (11)
O3	0.0501 (17)	0.053 (2)	0.0513 (17)	0.0218 (14)	0.0217 (14)	0.0106 (14)
O4	0.0429 (16)	0.0428 (17)	0.0267 (13)	0.0012 (13)	0.0080 (11)	0.0042 (12)
05	0.0430 (15)	0.0396 (19)	0.0296 (14)	0.0001 (12)	-0.0030 (12)	0.0026 (11)
N1	0.0259 (15)	0.0300 (17)	0.0247 (14)	-0.0036 (12)	0.0020 (11)	-0.0002 (12)
N2	0.0236 (14)	0.0298 (17)	0.0348 (16)	0.0020 (12)	0.0075 (12)	-0.0010 (13)
C1	0.0249 (15)	0.025 (2)	0.0189 (14)	0.0024 (13)	0.0057 (11)	0.0019 (12)
C2	0.0264 (15)	0.0230 (19)	0.0186 (14)	0.0018 (12)	0.0036 (12)	0.0011 (12)
C3	0.0253 (16)	0.0233 (17)	0.0216 (15)	0.0032 (13)	0.0043 (12)	-0.0013 (13)
C4	0.0269 (17)	0.0279 (19)	0.0200 (16)	-0.0004 (14)	0.0049 (13)	-0.0038 (13)
C5	0.042 (2)	0.030(2)	0.044 (2)	-0.0019 (17)	0.0062 (16)	0.0004 (17)
C6	0.0284 (19)	0.046 (2)	0.0318 (19)	-0.0067 (16)	-0.0032 (15)	0.0013 (17)
C7	0.0213 (13)	0.0262 (17)	0.0226 (13)	0.0029 (16)	0.0014 (10)	-0.0024 (16)
C8	0.0338 (19)	0.034 (2)	0.0292 (18)	0.0083 (16)	0.0055 (15)	0.0040 (15)

C0	0.042(2)	0.037(2)	0.038(2)	0.0124(18)	0.0085(17)	-0.0050(17)
C10	0.042(2) 0.036(2)	0.037(2)	0.033(2)	0.0124(18) 0.0070(18)	0.0005(17) 0.0116(17)	-0.0030(17)
C10	0.030(2)	0.040(2) 0.042(2)	0.032(2)	0.0011 (16)	0.0110(17) 0.0068(15)	0.0042(17)
C12	0.0515(1)	0.012(2) 0.054(3)	0.0219(10)	0.0011(10)	0.0000(10)	0.0003(15)
C12	0.050(3) 0.077(3)	0.051(3)	0.033(2) 0.043(3)	0.000(2) 0.015(3)	0.023(2) 0.033(2)	0.007(2) 0.023(2)
C14	0.077(3)	0.002(3)	0.041(2)	0.013(3)	0.033(2)	0.025(2)
C15	0.001(3) 0.037(2)	0.013(3)	0.0324(19)	0.011(2) 0.0024(16)	0.023(2)	0.0191(19) 0.0040(15)
C16	0.0240(16)	0.031(2) 0.0307(19)	0.0239(17)	0.0021(13)	0.0052(13)	0.0014 (13)
C17	0.0210(10) 0.0229(16)	0.0269(18)	0.0223(16)	0.0006(13)	0.0002(12)	0.0014(13)
C18	0.0379(19)	0.0275(19)	0.0197 (16)	-0.0008(15)	0.0027(14)	0.0023(13)
C19	0.044 (2)	0.031 (2)	0.0197 (16)	-0.0037(16)	0.0048(15)	-0.0011(14)
C20	0.048 (2)	0.027(2)	0.0261 (17)	-0.0024(15)	0.0028 (15)	-0.0029(13)
C21	0.049 (2)	0.029 (2)	0.0240 (17)	-0.0065(17)	0.0074 (15)	0.0036 (15)
C22	0.041 (2)	0.030 (2)	0.0204 (16)	-0.0047(15)	0.0078 (14)	-0.0004(14)
C23	0.0220 (16)	0.0228 (17)	0.0275 (17)	0.0007 (13)	0.0045 (13)	-0.0019 (13)
C24	0.0239 (14)	0.0259 (19)	0.0232 (14)	0.0014 (12)	0.0060 (12)	-0.0018 (12)
C25	0.0244 (16)	0.0262 (18)	0.0300 (18)	-0.0026 (13)	0.0091 (13)	-0.0038 (14)
C26	0.0284 (16)	0.034 (2)	0.0251 (15)	-0.0016 (14)	0.0087 (12)	-0.0039 (14)
C27	0.0326 (19)	0.034 (2)	0.0287 (18)	-0.0096 (16)	0.0104 (15)	-0.0061 (15)
C28	0.0308 (19)	0.039 (2)	0.043 (2)	-0.0012 (16)	0.0185 (16)	-0.0075 (17)
C29	0.0283 (19)	0.038 (2)	0.049 (2)	0.0038 (16)	0.0120 (17)	-0.0006 (18)
C30	0.0250 (17)	0.0272 (19)	0.0341 (19)	-0.0004 (14)	0.0074 (14)	-0.0022 (15)
C31	0.0253 (16)	0.0220 (17)	0.0270 (17)	-0.0010 (13)	0.0025 (13)	0.0024 (13)
C32	0.030 (2)	0.051 (3)	0.042 (2)	0.0104 (18)	-0.0054 (17)	0.0067 (19)
C33	0.0353 (19)	0.029 (2)	0.0299 (18)	-0.0005 (15)	0.0096 (15)	0.0002 (15)
C34	0.030 (3)	0.035 (4)	0.027 (3)	-0.001 (3)	0.006 (2)	-0.001 (2)
C35	0.034 (3)	0.035 (4)	0.032 (3)	0.004 (3)	0.006 (3)	-0.005 (3)
C36	0.041 (4)	0.060 (5)	0.042 (4)	0.012 (4)	0.010 (3)	-0.013 (4)
C37	0.065 (4)	0.058 (5)	0.040 (3)	0.010 (4)	0.019 (3)	-0.009 (3)
C38	0.056 (3)	0.053 (4)	0.030 (3)	0.002 (3)	0.005 (2)	-0.007 (3)
C39	0.036 (3)	0.040 (4)	0.034 (3)	0.000 (3)	0.003 (2)	-0.001 (3)
C34B	0.0239 (14)	0.0259 (19)	0.0232 (14)	0.0014 (12)	0.0060 (12)	-0.0018 (12)
C35B	0.031 (6)	0.042 (7)	0.030 (6)	0.003 (6)	0.003 (5)	-0.006 (6)
C36B	0.044 (6)	0.052 (7)	0.037 (6)	0.009 (6)	0.012 (6)	-0.017 (6)
C37B	0.053 (6)	0.055 (7)	0.036 (6)	0.003 (6)	0.018 (5)	-0.009 (6)
C38B	0.052 (6)	0.056 (7)	0.036 (5)	0.004 (6)	0.012 (5)	-0.003 (6)
C39B	0.040 (6)	0.044 (6)	0.033 (5)	0.004 (6)	0.008 (5)	-0.004 (6)
N3	0.077 (4)	0.038 (3)	0.078 (4)	0.002 (3)	0.030 (3)	0.015 (3)
C40	0.045 (3)	0.053 (4)	0.051 (4)	-0.008 (3)	0.024 (3)	-0.002 (3)
C41	0.049 (4)	0.055 (4)	0.092 (6)	0.009 (3)	0.032 (4)	0.007 (4)

Geometric parameters (Å, °)

Br1—C27	1.905 (4)	C18—H18	0.9500	
O1—C2	1.419 (4)	C19—C20	1.386 (5)	
O1—H1B	0.77 (5)	C19—H19	0.9500	
O2—C31	1.358 (4)	C20—C21	1.387 (5)	
O2—C32	1.434 (4)	C20—H20	0.9500	

O3—C33	1.241 (5)	C21—C22	1.383 (5)
O4—C33	1.273 (5)	C21—H21	0.9500
O5—H5D	0.86 (3)	С22—Н22	0.9500
О5—Н5Е	0.82 (3)	C23—C24	1.370 (5)
N1—C5	1.484 (5)	C23—C31	1.440 (5)
N1—C6	1.490 (5)	C24—C25	1.423 (5)
N1—C4	1.494 (4)	C24—H24	0.9500
N1—H1	1.0000	C25—C30	1.413 (5)
N2—C31	1.305 (5)	C25—C26	1.415 (5)
N2—C30	1.374 (5)	C26—C27	1.365 (5)
C1—C17	1.513 (5)	C26—H26	0.9500
C1—C23	1.526 (4)	C27—C28	1.406 (6)
C1-C2	1 572 (4)	C_{28} C_{29}	1 369 (6)
C1—H1A	1 0000	C28—H28	0.9500
$C^2 - C^3$	1 543 (5)	C_{29} C_{30}	1412(5)
$C_2 = C_3$	1.545(5) 1.551(4)	C_{29} H_{29}	0.9500
$C_2 = C_1$	1.531(4) 1.525(5)	C_{22} H_{32A}	0.9900
C_{3} H_{2} Λ	0.0000	C32—1132A	0.9800
$C_2 = H_2 D$	0.9900	C32—II32D	0.9800
	0.9900	C_{32} C_{34}	0.9800
C4—H4A	0.9900	C33-C34	1.478(12)
C4—H4B	0.9900	C34_C34B	1.57(5)
C5—H5A	0.9800	C34—C39	1.395 (11)
C5—H5B	0.9800	C34—C35	1.401 (10)
C5—H5C	0.9800	C35—C36	1.373 (9)
С6—Н6А	0.9800	С35—Н35	0.9500
С6—Н6В	0.9800	C36—C37	1.405 (10)
С6—Н6С	0.9800	С36—Н36	0.9500
С7—С8	1.370 (6)	C37—C38	1.381 (10)
C7—C16	1.449 (5)	С37—Н37	0.9500
C8—C9	1.411 (5)	C38—C39	1.385 (8)
С8—Н8	0.9500	С38—Н38	0.9500
C9—C10	1.359 (6)	С39—Н39	0.9500
С9—Н9	0.9500	C34B—C39B	1.40 (2)
C10—C11	1.408 (6)	C34B—C35B	1.41 (2)
C10—H10	0.9500	C35B—C36B	1.37 (2)
C11—C12	1.416 (6)	C35B—H35B	0.9500
C11—C16	1.440 (5)	C36B—C37B	1.41 (2)
C12—C13	1.347 (7)	C36B—H36B	0.9500
С12—Н12	0.9500	C37B—C38B	1.37 (2)
C13—C14	1.408 (6)	C37B—H37B	0.9500
C13—H13	0.9500	C38B—C39B	1 384 (19)
C14-C15	1 370 (5)	C38B—H38B	0.9500
C14—H14	0.9500	C39B_H39B	0.9500
C15-C16	1,417(5)	N3_C40	1 136 (9)
C15H15	0.9500	C40-C41	1 448 (10)
$C_{13} - C_{13}$	1 301 (5)	$C_{10} = C_{11}$	0.0800
C17 - C10	1.391(3) 1 202(5)	$C_{1} = 11 + 12$	0.9000
$C_{1} = C_{2}$	1.393 (3)	C_{41} $-\Pi_{41}D$	0.9000
U18-U19	1.383 (3)	U41—H41U	0.9800

C2—O1—H1B	109.5	C22—C21—C20	120.4 (3)
C31—O2—C32	116.9 (3)	C22—C21—H21	119.8
H5D—O5—H5E	104 (5)	C20—C21—H21	119.8
C5—N1—C6	110.4 (3)	C21—C22—C17	121.0 (3)
C5—N1—C4	112.7 (3)	C21—C22—H22	119.5
C6—N1—C4	109.8 (3)	C17—C22—H22	119.5
C5—N1—H1	107.9	C24—C23—C31	116.1 (3)
C6—N1—H1	107.9	C24—C23—C1	125.3 (3)
C4—N1—H1	107.9	C31—C23—C1	118.2 (3)
C31—N2—C30	117.9 (3)	C23—C24—C25	120.7 (3)
C17—C1—C23	109.9 (3)	C23—C24—H24	119.6
C17—C1—C2	110.9 (3)	C25—C24—H24	119.6
C23—C1—C2	115.5 (3)	C30—C25—C26	119.9 (3)
C17—C1—H1A	106.7	C30—C25—C24	117.8 (3)
C23—C1—H1A	106.7	C26—C25—C24	122.4 (3)
C2—C1—H1A	106.7	C27—C26—C25	118.6 (3)
O1—C2—C3	109.1 (3)	C27—C26—H26	120.7
O1—C2—C7	107.0 (3)	C25—C26—H26	120.7
C3—C2—C7	113.9 (3)	C26—C27—C28	122.5 (4)
O1—C2—C1	107.8 (3)	C26—C27—Br1	119.2 (3)
C3—C2—C1	111.2 (3)	C28—C27—Br1	118.3 (3)
C7—C2—C1	107.6 (2)	C29—C28—C27	119.1 (3)
C4—C3—C2	111.8 (3)	C29—C28—H28	120.4
С4—С3—НЗА	109.2	C27—C28—H28	120.4
С2—С3—НЗА	109.2	C28—C29—C30	120.6 (4)
C4—C3—H3B	109.2	С28—С29—Н29	119.7
С2—С3—Н3В	109.2	С30—С29—Н29	119.7
НЗА—СЗ—НЗВ	107.9	N2—C30—C29	118.9 (3)
N1—C4—C3	113.9 (3)	N2—C30—C25	121.9 (3)
N1—C4—H4A	108.8	C29—C30—C25	119.2 (3)
C3—C4—H4A	108.8	N2—C31—O2	119.6 (3)
N1—C4—H4B	108.8	N2—C31—C23	125.4 (3)
C3—C4—H4B	108.8	O2—C31—C23	115.0 (3)
H4A—C4—H4B	107.7	O2—C32—H32A	109.5
N1—C5—H5A	109.5	O2—C32—H32B	109.5
N1—C5—H5B	109.5	H32A—C32—H32B	109.5
H5A—C5—H5B	109.5	O2—C32—H32C	109.5
N1—C5—H5C	109.5	H32A—C32—H32C	109.5
H5A—C5—H5C	109.5	H32B—C32—H32C	109.5
H5B—C5—H5C	109.5	O3—C33—O4	124.6 (4)
N1—C6—H6A	109.5	O3—C33—C34	119.5 (5)
N1—C6—H6B	109.5	O4—C33—C34	115.9 (5)
H6A—C6—H6B	109.5	O3—C33—C34B	118.1 (11)
N1—C6—H6C	109.5	O4—C33—C34B	117.2 (11)
Н6А—С6—Н6С	109.5	C39—C34—C35	118.2 (9)
Н6В—С6—Н6С	109.5	C39—C34—C33	121.6 (9)
C8—C7—C16	117.8 (3)	C35—C34—C33	120.2 (9)

C ⁰ C 7 C 2	117.2 (2)	626 625 624	100 7 (0)
	117.3 (3)	$C_{36} = C_{35} = C_{34}$	120.7 (8)
C16 - C7 - C2	124.7 (3)	C36—C35—H35	119.6
C/C8C9	123.5 (4)	С34—С35—Н35	119.6
С7—С8—Н8	118.3	C35—C36—C37	119.9 (8)
С9—С8—Н8	118.3	С35—С36—Н36	120.1
C10—C9—C8	119.6 (4)	С37—С36—Н36	120.1
С10—С9—Н9	120.2	C38—C37—C36	119.9 (7)
С8—С9—Н9	120.2	С38—С37—Н37	120.0
C9—C10—C11	120.4 (4)	С36—С37—Н37	120.0
C9—C10—H10	119.8	C37—C38—C39	119.4 (6)
C11—C10—H10	119.8	С37—С38—Н38	120.3
C10—C11—C12	120.1 (4)	С39—С38—Н38	120.3
C10—C11—C16	120.5 (4)	C38—C39—C34	121.6 (7)
C12—C11—C16	119.5 (4)	С38—С39—Н39	119.2
C13—C12—C11	121.7 (4)	С34—С39—Н39	119.2
C13—C12—H12	119.2	C39B—C34B—C35B	119 (2)
C11—C12—H12	119.2	C39B—C34B—C33	117 (2)
C12—C13—C14	119.8 (4)	C35B—C34B—C33	124 (2)
С12—С13—Н13	120.1	C36B—C35B—C34B	121 (2)
C14—C13—H13	120.1	C36B—C35B—H35B	119.6
C15—C14—C13	120.6 (4)	C34B—C35B—H35B	119.6
C15—C14—H14	119.7	C35B—C36B—C37B	118 (2)
C13—C14—H14	119.7	C35B—C36B—H36B	121 2
C_{14} C_{15} C_{16}	121 8 (4)	C37B-C36B-H36B	121.2
$C_{14} = C_{15} = H_{15}$	110 1	$C_{38B} = C_{37B} = C_{36B}$	121.2 120(2)
$C_{14} = C_{15} = H_{15}$	119.1	$C_{38B} = C_{37B} = C_{30B}$	120 (2)
$C_{10} = C_{10} = C_{10} = C_{10}$	119.1 116.7(2)	$C_{26}^{26} = C_{27}^{27} = H_{27}^{27}$	119.8
$C_{15} = C_{16} = C_{17}$	110.7(3) 125.1(2)	$C_{30B} = C_{37B} = C_{30B}$	119.0 120.0(17)
C13 - C10 - C7	123.1(3)	$C_{37}D = C_{36}D = C_{39}D$	120.0 (17)
C12 - C12 - C7	118.2(3)	$C_{3}B = C_{3}\delta B = H_{3}\delta B$	120.0
C18 - C17 - C22	118.1 (3)	C39B—C38B—H38B	120.0
	120.3 (3)	C_{38B} C_{39B} C_{34B}	119.7 (19)
C22—C17—C1	121.5 (3)	C38B—C39B—H39B	120.2
C19—C18—C17	121.0 (3)	С34В—С39В—Н39В	120.2
С19—С18—Н18	119.5	N3—C40—C41	177.7 (8)
C17—C18—H18	119.5	C40—C41—H41A	109.5
C18—C19—C20	120.4 (3)	C40—C41—H41B	109.5
C18—C19—H19	119.8	H41A—C41—H41B	109.5
С20—С19—Н19	119.8	C40—C41—H41C	109.5
C19—C20—C21	119.1 (4)	H41A—C41—H41C	109.5
С19—С20—Н20	120.4	H41B—C41—H41C	109.5
C21—C20—H20	120.4		
C17—C1—C2—O1	54.5 (3)	C17—C1—C23—C31	87.0 (4)
C23—C1—C2—O1	-71.4 (3)	C2-C1-C23-C31	-146.7 (3)
C17—C1—C2—C3	174.1 (3)	C31—C23—C24—C25	2.2 (5)
C23—C1—C2—C3	48.2 (4)	C1—C23—C24—C25	175.4 (3)
C17—C1—C2—C7	-60.6 (3)	C23—C24—C25—C30	1.3 (5)
C23—C1—C2—C7	173.6 (3)	C23—C24—C25—C26	-178.0 (3)
	× /		\[

O1—C2—C3—C4	-76.1 (3)	C30—C25—C26—C27	0.6 (5)
C7—C2—C3—C4	43.4 (4)	C24—C25—C26—C27	179.9 (3)
C1—C2—C3—C4	165.1 (3)	C25—C26—C27—C28	3.2 (6)
C5—N1—C4—C3	65.3 (4)	C25—C26—C27—Br1	-177.0 (3)
C6—N1—C4—C3	-171.3 (3)	C26—C27—C28—C29	-4.1 (6)
C2-C3-C4-N1	165.5 (3)	Br1-C27-C28-C29	176.1 (3)
O1—C2—C7—C8	-8.1 (4)	C27—C28—C29—C30	1.1 (6)
C3—C2—C7—C8	-128.8(3)	C31—N2—C30—C29	-179.3 (4)
C1—C2—C7—C8	107.5 (3)	C31—N2—C30—C25	1.4 (5)
O1—C2—C7—C16	176.3 (3)	C28—C29—C30—N2	-176.9 (4)
C3—C2—C7—C16	55.6 (4)	C28—C29—C30—C25	2.4 (6)
C1—C2—C7—C16	-68.1 (4)	C26—C25—C30—N2	176.0 (3)
C16—C7—C8—C9	-0.1 (6)	C24—C25—C30—N2	-3.3 (5)
C2—C7—C8—C9	-175.9 (3)	C26—C25—C30—C29	-3.3 (6)
C7—C8—C9—C10	-0.9 (6)	C24—C25—C30—C29	177.4 (3)
C8—C9—C10—C11	1.2 (6)	C30—N2—C31—O2	-177.1 (3)
C9—C10—C11—C12	178.9 (4)	C30—N2—C31—C23	2.6 (5)
C9—C10—C11—C16	-0.5 (6)	C32—O2—C31—N2	2.4 (5)
C10-C11-C12-C13	-179.1 (5)	C32—O2—C31—C23	-177.3 (3)
C16—C11—C12—C13	0.4 (7)	C24—C23—C31—N2	-4.4 (5)
C11—C12—C13—C14	-0.3 (8)	C1—C23—C31—N2	-178.2(3)
C12—C13—C14—C15	0.1 (8)	C24—C23—C31—O2	175.3 (3)
C13—C14—C15—C16	0.0 (7)	C1—C23—C31—O2	1.5 (5)
C14—C15—C16—C11	0.1 (6)	O3—C33—C34—C39	21 (2)
C14—C15—C16—C7	179.7 (4)	O4—C33—C34—C39	-157.5 (13)
C10-C11-C16-C15	179.2 (4)	O3—C33—C34—C35	-159.2 (14)
C12—C11—C16—C15	-0.3 (6)	O4—C33—C34—C35	22 (2)
C10—C11—C16—C7	-0.5 (5)	C39—C34—C35—C36	-3(3)
C12—C11—C16—C7	-179.9 (4)	C33—C34—C35—C36	177.0 (13)
C8—C7—C16—C15	-178.9(4)	C34—C35—C36—C37	6 (2)
C2—C7—C16—C15	-3.3 (5)	C35—C36—C37—C38	-6.6 (17)
C8—C7—C16—C11	0.7 (5)	C36—C37—C38—C39	3.6 (14)
C2—C7—C16—C11	176.3 (3)	C37—C38—C39—C34	-0.6 (16)
C23—C1—C17—C18	-135.1 (3)	C35—C34—C39—C38	0 (2)
C2—C1—C17—C18	95.9 (4)	C33—C34—C39—C38	180.0 (12)
C23—C1—C17—C22	46.4 (4)	O3—C33—C34B—C39B	4 (6)
C2—C1—C17—C22	-82.5 (4)	O4—C33—C34B—C39B	-179 (3)
C22—C17—C18—C19	0.1 (5)	O3—C33—C34B—C35B	-175 (5)
C1—C17—C18—C19	-178.4 (3)	O4—C33—C34B—C35B	2 (7)
C17—C18—C19—C20	0.4 (6)	C39B—C34B—C35B—C36B	4 (8)
C18—C19—C20—C21	-0.7 (6)	C33—C34B—C35B—C36B	-177 (4)
C19—C20—C21—C22	0.4 (6)	C34B—C35B—C36B—C37B	-14 (6)
C20—C21—C22—C17	0.1 (6)	C35B—C36B—C37B—C38B	19 (5)
C18—C17—C22—C21	-0.3 (6)	C36B—C37B—C38B—C39B	-15 (4)
C1—C17—C22—C21	178.2 (3)	C37B—C38B—C39B—C34B	5 (5)
C17—C1—C23—C24	-86.1 (4)	C35B—C34B—C39B—C38B	1 (8)
C2—C1—C23—C24	40.2 (5)	C33—C34B—C39B—C38B	-178 (3)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
01—H1 <i>B</i> …O5	0.77	1.94	2.691 (4)	163
O5—H5D···O4 ⁱ	0.86 (3)	1.89 (3)	2.738 (4)	168 (6)
O5—H5 <i>E</i> ···O3	0.82 (3)	1.92 (3)	2.734 (4)	172 (6)
N1— $H1$ ···O4 ⁱ	1.00	1.62	2.619 (4)	178
C5—H5C···Br1 ⁱⁱ	0.98	3.13	3.964 (4)	144
С6—Н6А…ОЗ	0.98	2.63	3.562 (6)	159
C28—H28…O5 ⁱⁱ	0.95	2.66	3.498 (5)	148

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*; (ii) -*x*+2, *y*-1/2, -*z*.